On the Security of Industrial Control Systems

Penetration Testing a Representative Testbed

Jodo Almeida*, José Donato'
Departamento de Engenharia Informética
Universidade de Coimbra
*jlalmeida@student.dei.uc.pt, Tdonato@student.dei.uc.pt

Abstract—Industrial control systems are a frail basis of many
essential services, with the legacy equipment used exacerbating
existing ICT threats. In this paper we go over the penetration
testing procedure applied to a representative testbed. Results
show that security does not come built into these systems, and
efforts should be made to assure it despite the associated costs.

Index Terms—Industrial control, SCADA systems, Network
security, Computer security

I. INTRODUCTION

The transition of Industrial Control Systems (ICS) from iso-
lated, into interconnected networks adopting open protocols,
severely exposed their legacy systems to (to them) new threats.

In these scenarios continuity of service is essential, with
availability being highly favored over the remaining security
properties (cryptography may slow down some processes,
for example) for financial/safety concerns. This can result in
catastrophic outcomes where a simple scan on the network
incapacitating crucial system components.

This paper details the penetration testing procedure applied
to a testbed representative of such systems.

Our goal is thus to model an attacker in identifying vul-
nerabilities, so that the organization can fix (or control) these
and better defend its assets. This includes preventing not only
direct damage, but also the extraction of any information on
the system’s inner workings.

We structured the report according to Fig[Is ([4]) phases,
with Sec[ll] focusing on establishing our approach, Sec[ITl] on
gaining insight into the system, and Sec[IV] on exploring the
identified attack vectors. Finally, in Sec we discuss our
findings, concluding in Sec.

"

Planning
Phase

Reporting

Discovery ’ Attack
Phase

Phase ‘ Phase

| AN v,

Fig. 1: Penetration testing phases.
Image taken from [4]

II. PLANNING

Our plan is to extract as much information as possible out
of the testbed, while striving to remain undetected.
To achieve this, we further subdivide Fig[I]s phases:

o For planning, we must understand the tools we’re work-
ing with (Sec[lI-A), and the testbed where they’ll be
applied (Sec[lI-B). Additionally, it’s important to define
straightaway how to minimize our footprints (Sec[lI-DJ.

« For scouting (discovery) we begin by passively analysing
the network’s traffic (Sec[[lI-A)), to then identifying hosts
(Sec[IT-B) and their services (Sec[lII-C). Specific recon
scripts for some devices are also executed (Sec[llI-D),
and finally, we quickly discuss a technique for doing all
of this stealthily - zombie scans (Sec[llI-E).

o For attacking we consider numerous approaches, and
identify vulnerabilities exploited by each. Although some
of the methods described can damage the components,
they were not enacted upon, and we focused on safer
attacks such as gaining info through monitoring traffic
with Man-in-the-Middle attacks (Sec[[V-B)), and reverse
engineering firmware for credentials (Sec[IV-DJ.

A. Toolset

All operations were carried out with Kali Linux - a distri-
bution prepackaged with many tools integral for pentesting.

Our machine has three Network Interface Cards, with
TestbedPG being connected to the testbed (eth1l in our case).

The variety of tools available means we won’t restrict
ourselves a priori to a particular set of them. Instead, we
begin with common network scanning tools - namely nmap
and arp-scan - selecting further tools based on the intel they
provide. As such, our reasoning for using each tool/technique
will be explained in the (sub)section were each is applied.

B. Testbed

The testbed we will be working with represents a simple
cooling process, where the temperature sensor’s measures lead
to adjustments in the motor’s frequency.

Its topology is shown below, in Fig[%}



HMI

-
Eia

VFD* ‘

-

Motor ‘

PLC1

{Temp Sensor

Fig. 2: Testbed topology.
Image taken from [CDIS-PL2].

One thing that’s immediately apparent, is how PLC2 is a
critical device, constituting a choke point in the system. By
controlling its communications, we are effectively in charge
of the testbed.

Considering its mapping into the Purdue model (Fig. [3),
this penetration test targets the Cell/Area Zone [5]. We’ve got
the sensors (temperature) and actuators (VFD) at the Process
Level (0), the Programmable Logic Controllers (PLC) at the
Control Level (1), and the Human Machine Interface (HMI)
at the Supervisory Level (2).

Enterprise Zone

Level 5: Enterprise

I

Level 4: Site Business Planning and Logistics

Manufacturing Zone

Level 3: Site Manufacturing Operations and Control

Cell/Area Zone

Level 2: Area Supervisory Control

!I

Level 1: Basic Control

Level 0: Process

Safety Zone

Fig. 3: Purdue Model for Control Hierarchy.
Image taken from [J5].

Our pentesting approach is thus grey box [4], since we had
some prior knowledge such as network topology (in our case
purposely provided by the professor, but it could have been
disclosed by employees through social engineering, etc.)

C. Network Access

We already start off with access to the control network,
shortcutting the process of gaining access to it.

This would typically consist of infecting an employee/-
subcontractor’s equipment, “progressing” through the organi-
zation’s network. Before, these systems were typically air-
gapped, and there was reduced connectivity between each
layer (corporate, control and device). Nowadays, they are more
interconnected than ever, facilitating the attacker’s task.

Additionally, the adoption of standard protocols removes
a significant difficulty barrier in dissecting proprietary ones.
Nowadays, attackers can resort to publicly available scripts
for most of the work.

D. Footprint

During all phases, our goal is to remain invisible or as close
to invisible as possible. To achieve this, several precautions
were necessary:

o Delays in the scouting probes sent to each device. This
serves not only to dilute them amongst the constant
network traffic from polling, but also to prevent fragile
devices from breaking due to the high flux of packets
(which would certainly set off alarms).

Both nmap (with ——scan-delay), and arp-scan (with
——interval), provide this functionality. Nmap addi-
tionally provides timing profiles (-T).

« Disabling ARP replies: we are operating on a machine
foreign to the network, and as such do not want to an-
nounce our presence (refusing to answer to ARP queries).
The reason is for this is that the MAC address returned
in such queries uniquely identifies a NIC.

Listing 1: Disabling ARP

echo 1 > /proc/sys/net/ipv4/conf/eth0/arp_ignore
echo 2 > /proc/sys/net/ipvéd/conf/eth0/
arp_announce

¢ Spoof IP / MAC addresses. We can change the source
IP address of requests with nmap (-S) and arp-scan
(-—arpspa). Additionally, we can change on NIC’s
MAC with macchanger, possibly to an existent in the net-
work to bypass some MAC-based authentication (though
this could lead to conflicts and was not tested).

Listing 2: MAC Spoofing

ifconfig ethl down

macchanger -r ethl # random

# macchanger -m <mac> ethl # specific
ifconfig ethl up

III. DISCOVERY

In this section we mostly exploit nmap’s versatility as a
network exploration tool. It offers a wide variety of probes
for bypassing firewalls and eliciting responses from different
hosts/services [7] (though most will be avoided, given the
devices’ fragility). Moreover, it contains a database of finger-
prints for matching responses to specific service versions [7]],
which will be extremely useful for identifying vulnerabilities
without having to actively exploit them.

A. Traffic Analysis

But first, we start by passively analyzing traffic. We resort
to tcpdump for capturing data on our testbed-connected NIC,
and analyze it with wireshark - a great tool for filtering packets
and inspecting each in detail.



Listing 3: Traffic Analysis
tcpdump —-i ethl -c <count> -w ethl.pcap
wireshark -r ethl.pcap

Since our NIC is not in promiscuous mode, we are only
capturing packets addressed to our MAC or broadcasted (eg.
ARP requests). Still we can we deduce some useful informa-
tion, namely the network’s IP range:

From Fig[5[s ARP requests we suspect the 172.27.224.0/24
subnet, which is confirmed in Figf] through .10’s SMB an-
nouncement, disclosing it’s a windows machine and leading
us to conclude that it’s most likely the HMI (provides familiar
interface for workers).

ing Info

62 Who has 172.27.224.2507 Tell 17V2.27.224.251
62 Who has 172.27.224.2507 Tell 172.27.224.251
62 Who has 10.254.0.2497 Tell 10.254.0.244

62 Who has 10.254.0.2497 Tell 10.254.0.243

62 Who has 172.27.224.2507 Tell 172.27.224.251
62 Who has 172.27.224.2507 Tell 17V2.27.224.251

Fig. 4: ARP requests

as

EKC_ 64 roadcas 0 272747507
172.27.224.160° 172.27.224.255 BROW.. 243 Host Announcement X-PC)]
172.27.224.10  172.27.224.255 BROW.. 217 Request Announcement X-
]

~ SMB MailSlot Protocol
Opcode: Write Mail Slot (1)
Priority: @
Class: Unreliable & Broadcast (2)
Size: 50
Mailslot Name: \MAILSLOT\BROWSE
~ Microsoft Windows Browser Protocol
Command: Host Announcement (0x01)

Fig. 5: SMB announcement

We also discovered attempts from .10 to join a multicast
group 224.0.0.252 (but had no luck scanning it), as well as
its frequent UDP broadcasts to port 1947 which according to
an online search seems to be for license management (some
proprietary software is being used).

B. Host Discovery

Our goal is now to reduce the 172.27.224.0/24 IP range into
a list of relevant hosts [8]:

Listing 4: Using arp-scan

arp-scan —--interface=eth0 --arpspa 172.27.224.80 -v
——interval=500 172.27.224.0/24

Listing 5: Using nmap

nmap --send-eth -e eth0 -sn -S 172.27.224.80 -n ——
scan—-delay 500ms 172.27.224.0/24

1P Mac Address Device Information Guess
172.27.224.10 fc:f8:ae:9d:9e:9e Intel Corporate HMI
172.27.224.245 | 08:00:06:12:c0:de | SIEMENS AG PLC
172.27.224.250 | 00:80:f4:09:51:3b | Telemecanique Electrique | PLC
172.27.224.251 | 48:5b:39:64:40:79 | ASUSTek Computer Inc.

TABLE I: Relevant devices identified

Each MAC address contains the vendor’s unique identifier
(OUI), and just from that we can already extract useful infor-
mation, primarily that .245 and .250 are PLCs (Telemecanique,

now Schneider, and Siemens are two big manufacturers of
SCADA equipment).

We also found other devices with a VMware OUI, which
should belong to the other participating teams - and were thus
excluded from further recon since they’re not our target.

C. Service Detection

Typically there would be a port scanning step, before
moving on to detecting versions of the open ports’ services
[8]. However, we skip this first step for brevity, and use Listing
[6's command for both.

Listing 6: Version Detection Scan

nmap --send-eth -e ethl -sV -f -n <host> -p- -Pn —-—
disable-arp-ping —--scan-delay 1

Since ICS devices are sensitive and fragile, and their TCP/IP
stacks are often lacking, we do not do UDP scans (-sU), as
empty or malformed payloads are often sent. For reference,
the default is -sS (SYN scan) which attempts to open TCP
connections.

We now discuss the results for each host identified:

1) 172.27.224.10: A lot of windows-specific processes,
confirming our previous findings. Notably, we see the open 139
and 445 ports, infamous for the WannaCry attack exploiting
the EternalBlue vulnerability. This corresponds to the deadly
CVE-2017-0144, allowing remote code execution and with
several exploits available (linked on the CVE page).

Nmap scan report for 172.27.224.10
Host is up (@.00014s latency).

Not shown: 986 closed ports

PORT STATE SERVICE

80/tcp open http

135/tcp open msrpc

139/tcp open netbios-ssn
445/tcp  open microsoft-ds
orkgroup: WORKGROUP)

1947/tcp open http

00

3389/tcp open
5357/tcp open
10000/tcp open
49152/tcp open
49153/tcp open
49154/tcp open
49159/tcp open
49160/tcp open
49161/tcp

VERSION

Microsoft IIS httpd 7.5

Microsoft Windows RPC

Microsoft Windows netbios-ssn

Microsoft Windows 7 - 1@ microsoft-ds (w

Aladdin/SafeNet HASP license manager 18.

ss1/ms-wbt-server?
http
snet-sensor-mgmt?
msrpc

msrpc

msrpc

msrpc

Microsoft HTTPAPI httpd 2.0 (SSDP/UPnP)

Microsoft Windows RPC
Microsoft Windows RPC
Microsoft Windows RPC
Microsoft Windows RPC
Microsoft Windows RPC
Microsoft Windows RPC

Fig. 6: 172.27.224.10’s scan

2) 172.27.224.245: From this host’s scan (Fig[7) we only
see an open http port.

Nmap scan report for 172.27.224.245

Host is up (0.00013s latency).

Not shown: 999 closed ports

PORT  STATE SERVICE VERSION

80/tcp open http

1 service unrecognized despite returning data.

Fig. 7: 172.27.224.245’s scan

If you know th

Accessing it through the browser (Fig[8) we see a simple
status with the device’s model in the title. After that, we easily
conclude that .245 was one of the PLCs.


https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0144

& Problem loading page

MATIC

ew - Siemens

Technodrome

_ Status:

Current time: 08:31:06
System uptime: 216251 timeticks (deciseconds)

Fig. 8: 172.27.224.245* web server

3) 172.27.224.250: The scan revealed a (very secure)FTP
and web server services open (Fig[d). Again, accessing it via
browser, we concluded this was the remaining PLC (Fig[I0)
and got its model.

PORT STATE SERVICE VERSION
vsftpd (before 2.8.8) or WU-FTPD
http Schneider-WEB 2.1.3

PO:BR:FL:P9:51:3B (Telemecanique Electrique)

21/tcp open ftp

B@/tcp open
MAC Address:

Fig. 9: 172.27.224.250’s scan

Home

Fig. 10: 172.27.224.250’s web server

4) 172.27.224.251: Unlike all scans so far, .251 revealed
that all ports were closed. With further study (analysing
packets on the network with Wireshark), we deduced that .251
is some kind of network device and not too relevant.

Nmap scan report for 172.27.224.251
Host is up (0.000084s latency).

All 100@ scanned ports on 172.27.224.251 are closed
MAC Address: 48:5B:39:64:40:79 (Asustek Computer)

Fig. 11: 172.27.224.251’s scan

One final note, is that the testbed was highly volatile with so
many people pentesting. As such, some scans did not always
return the same results (eg. for .250’s our screenshot is missing
the open 502 port of Modbus).

D. Targeted Scripts

Nmap is highly extensible through user-written scripts.
This allows device-specific scans, in this case for mod-
icon (.250) and s7 (.245) devices [13]]. These are
placed in /usr/share/nmap/scripts and run with
——script=<s>.

We first run modicon-info on .250 (Fig[I2) and get its
full specification, which will allow us later on to obtain its
firmware for reverse engineering (Sec[[V-D).

:~% sudo nmap -Pn 172.27.224.250 —script modicon-info.nse —p 502
Starting Nmap 7.80 ( https://nmap.org ) at 2020-04-19 00:20 WEST
NSE: DEPRECATION WARNING: bin.lua is deprecated. Please use Lua 5.3 string.pack
Nmap scan report for 172.27.224.250
Host is up (0.0895s latency).

PORT  STATE SERVICE
502/tcp open Modbus
modicon-info:
Vendor Name: Schneider Electric
Network Module: BMX P34 20302
CPU Module: BMX P34 20302
Firmuare: v2.4
Memory Card: BMXRMS00BMP
Project Information: Project - V6.9
Project Revision: 0.0.30
_ Project Last Modified: 4/5/2019 16:46:48
MAC Address: 00:80:F4:09:51:38 (Telemecanique Electrique)

CDIS-PC C:\Users\CDIS\Desktop\cdis.STU

Nmap done: 1 IP address (1 host up) scanned in @.62 seconds
=%

Fig. 12: nmap’s *modicon-info’ script

As for host .245, we see no output other than it now showing
an open port 102 (Fig[I3). As we’ll see in Sec[[V-B] we
suspect this device had issues when we attempted to test it.

:~$ sudo nmap 172.27.224.245 —script s7-info.nse -p 102
Starting Nmap 7.80 ( https://nmap.org ) at 2020-04-19 @0:32 WEST
Nmap scan report for 172.27.224.245
Host is up (@.00025s latency).

PORT STATE SERVICE
102/tcp open i
MAC Address: 12:C@:DE (Siemens AG)

Nmap done: 1 IP address (1 host up) scanned in 6@.39 seconds

Fig. 13: nmap’s ’s7-info’ script

Finally, we return to the HMI, and use a scanner available
in metasploit for determining its vulnerability to EternalBlue.
The result shows that it likely is (Fig[T4), though we will not
attempt to exploit it to avoid potential damages. Nevertheless
we hope that with this report, the organization goes out to
check whether the security patches have been installed.

sf5 auxiliary( ) > run

[+] 172.27.224.10:445 - Host is likely VULNERABLE to M517-01@! - Windows 7 Enterprise N 760

1 Service Pack 1 x86 (32-bit)

172.27.224.10:445 - Scanned 1 of 1 hosts (100% complete)
Auxiliary module execution completed

msf5 auxiliary( )>1

Fig. 14: metasploit’s SMB RCE scanner

E. Zombie Scan

We could have used a more complex approach when per-
forming the scanning phase to add another layer of camou-
flage. Instead of normal nmap scans with a spoofed IP, we
could have used an interesting method called zombie scan or
idle scan [8].


https://www.exploit-db.com/exploits/41891

This is an advanced scan where another system is used to
take the fault, since as far the target is concerned, only the
zombie is communicating with it.

This is done by sending the probes to the target with a
spoofed source address (the zombie’s). But since the potential
reply will be received by the zombie - if the target/one of its
ports is up - we then probe it for obtaining the target’s status.

This is a very slow process, but with very interesting
applications:

« using a system device (for example, HMI which should be
accessed by many other systems) to go unnoticed through
an IDS/firewall when accessing the PLCs

e using a competitor over the network to take the blame,
possibly creating conflict (but impossible in this situation
because the testbed is isolated from public network)

IV. ATTACK
A. DoS

As we have reiterated so far, the devices and protocols
used in this type of systems are legacy and made in order
to guarantee efficiency and availability at the expense of their
security. Paradoxically, they are also made to operate under a
constant expected load, due to their limited computing power
and time-sensitivity of package reception.

We can therefore easily overload these fragile devices
(with tools such as hping3 or nping) preventing its correct
functioning or, in the worst case, breaking it completely.

Denial-of-Services attacks are thus a major concern, and
these devices should definitely not be exposed to the internet.

Example of command to do this type of attack from classes:

Listing 7: hping3 / nping

sudo hping3 -S --flood -p 502 172.27.224.250
sudo nping —--tcp-connect --flags syn —--dest-port 502
-rate=90000 -c 900000 —-g 172.27.224.250

One of these commands from one machine can make our
testbed unresponsive (eg. PLC2 stops responding to the HMI)
until it is stopped. We can easily imagine the damage that can
be done if we distribute the attack across multiple machines
(DDoS) and/or amplify the packets’ size through reflection
(DrDoS). For example, in this video there is the result of an
attack on an industrial system. As we can see, the damages
can be catastrophic in financial terms or worse.

B. MiTM

MiTM is trivial given the lack of authentication in the
devices’ communications. The further lack of encryption also
means we are able to modify, suppress or spoof traffic at our
discretion.

In this section we use ettercap for performing MiTM attacks
through ARP poisoning, used at first for identifying existing
communication flows in the system. This works by changing
the two targets’ ARP cache, to think the other’s MAC address
is in fact ours.

Later, we can apply our own ettercap filters to manipulate
the two targets’ traffic passing through us.

We start by targetting PLC2 and the HMI, ie. the traffic
being shown to the workers. Having the attack in progress,
we can run tcpdump to capture all traffic passively, and once
again analyze it later with wireshark.

In it, the HMDI’s constant polling (typical of Modbus) is
visualized, and we can see the contents of the PLC’s registers:

Destination
172.27.224.10
172.27.224.250
172.27.224.10
172.27.224.250

No. Time
37 1.651648
41 1.953008
43 1,960974
50 2.263459

Source
172.27.224.250
172.27.224.10
172.27.224.250
172.27.224.10

Protoce~ Lengtt Info E
Modbus 85 Response: Trans:
Modbus 66 Query: Trans
Modbus 85 Response: Trans:
Modbus 66 Query: Trans

85 Response:
Modbus. 66 Query: Trans
Modbus 85 Response: Trans:

coffcooa

172.27.224.10
172.27.224.250

‘ 56 2.574991
58 2,591628

172.27.224.10

~ecllccce

.608 0011 = Function Code: Read Holding Registers (3) -
Request Frame: 50

[Tine from request: 0.80754908 seconds]

Byte Count: 22

Register © (UINT16): 1

Register 1 (UINT16): 1

Register 2 (VINT16): 4

Register 3 (UINT16): 0

Register 4 (UVINTi6): 333

Register 5 (UINT16): O

Register 6 (VINT16): 26

Register 7 (UINT16): O

Register 8 (UINT16): O

Register 9 (UINT16): O

Register 16 (UINT16): & c
00 0c 29 cd 46 70 B0 89 f4 09 51 3b 0B 80 45 00 ) Ep - - Q; E

09 47 a7 ab 40 60 49 06 79 cdac 1b ed faac b G @ y

0 Da B1 f6 Cf cb fe 04 61 32 e3 2c fa 63 50 18 az-,-cp

22 08 e7 cl 60 60 60 00 0 00 0 19 O1 63 16 88 "

01 06 B1 0B 64 60 B9 01 4d 0 0O B0 14 69 0O 6O M

09 06 80 98 60

A ¥ a0 e e

Fig. 15: MiTM of HMI and PLC2

Nirrlnind: 778 110 A0 Drafila: Mafale

With our prior knowledge of the testbed, we know that
Register 6 is the temperature value. Otherwise, with access
to the HMI's monitoring - which we get in Sec[[V-C| - we
would have seen the following screen (Fig[I6):

Rapid SCADA
oil 4] pate[21 %[ March #)[2018 ] Coun 12230 @o3h @ [&] 4 G
Electrical
0::::" Consumption
¢ B8 KWH
- Securty Snich 03

Setpoint

Fig. 16: HMI interface
Image taken from [CDIS-PL6]

With this information, we would have also mapped the
electric consumption to Register 1, and the security switch
to Register 0 (basing off of slides 7 and 12 of PL6).

Why is this important? Because an attacker looking to
damage the system, would want to artificially increase the
temperature value, so that the motor overspins and destroys
itself. But we must consider that the motor may have a
mechanism in place to prevent dangerous RPMs, and that the
electric consumption should stay consistent with the reported
temperature value.

Looking back at Figlll-B] we also need to control the
communications between PLC1 and PLC2. Unfortunately we
did not capture any traffic between them, as PLC1 appeared


https://www.youtube.com/watch?v=fJyWngDco3g

to be down (its uptime also did not change). Otherwise we
expected to see the reporting of the temperature, from PLC1
to PLC2 (which sets its register accordingly).

The attack would then consist of intercepting PLC1’s com-
munications with PLC2, increasing the reported temperature
value. Meanwhile, PLC2 would have to keep reporting an
adequate temperature to the HMI (unknowingly), while trying
desperately to cool an ever increasing temperature, destroying
the motor.

For this we write and compile ettercap filters that change
specific bytes in each packet. For PLC2’s reporting it’s as
shown below (Fig[I7). For PLC1 we were unable to see any
traffic, as described.

|| "Untitled - Notepad

File Edit Format View Help
if (ip.proto== TCP && tcp.src== 502 8% ip.src == '172.27.224.250°){
if (DATA.data+7 == @x@3) {
msg("Found Modbus Read Holding Register FC");
DATA.data+2l = @xee;
DATA.data+22] = @x27;

Fig. 17: MiTM tampering

C. Default Password + Out-of-band sources

The HMI hosted in 172.27.224.10 has a web server available
to the employees under /Scada endpoint.

Comparing to Stuxnet [6], a popular attack on an ICS,
the same way they leaked sensitive information on public
television, we grabbed the credentials from analysing the
presentation of the target (10th slide of CDIS PL6).

Here, they can monitor the system’s status (Fig. [I8) after
successful login. There is another view of the system provided
but it requires the outdated Silverlight plugin.

{3 SCADA - 0il

e

Rapid SCADA

[ oil_table +| Date [19  + [April -
item CUR 0o [ 1] 23] 4]s

+ bitd [} o | o[ ofof[o]o

+ bitd 0 0 0 0 0 0 0

+ Test device - MWO 1000 | 1000 1.000 | 1.000 | 1.000 | 1.000 | Looo |1

+ Test device - MWL 1000 | 1.000 | 1.000 | 1.000 | 1.000 | L.000 | LoD |1

+ Test device - MW2 4.000 4.000 | 4.000 | 4.000 | 4.000 | 4.000 | 4.000 | 4.

+ Test device - MWS3 0000 | 0000 ] 0.000 ] 0.000 | 0.000 | 0.000 | 0.000 | 0

Fig. 18: 172.27.224.10/Scada

Since this is a sensitive page it was expected that it would
have strong passwords (ideally with 2-factor authentication) to
prevent access from unauthorized parties.

Once again, unfortunately, this device has default and/or
weak passwords. A quick google search for “’rapid scada pass-
word” gave us the correct credentials (user: admin, password:
1245). However, even with no information about them, we
would have easily bruteforced it.

D. Reverse Engineering: Getting access to critical device

We started by searching for PLC2’s firmware, since we al-
ready know its model (BMXP3420302). This is made available
from the official website [2] under ”Sofware and Firmware”.

The downloaded file can be opened with an archiving
tool, and we quickly discovered a password.rde file (Fig[T9).
Plugging it into .250’s web server (Fig[20), we gain access to
java applets used for monitoring and control. Though again,
we are missing the required browser plugin. We tried installing
old Firefox versions with no luck.

BMXP3428362_S5V320.1dx — Ark

Archive File Settings Help

[l extract = [d Preview FJopen Q Find... )
Name ~ Size Compressed CF*
- B web 2 Folders, 4 Files

~ B rdt 1 File
password.rde 4B 4B EH

(=R rile:///tmp/ark-AVnetf /Web/ rdt/password. rde — Ark

ie 1, Columr fO) INSE :n_U¢~ ft Tabs~ JTF-£~ lorm:~
@ Close

= plain text document

Schneider PBESETTE
LElectric [EomeDocumentation

Monitoring IS

m
Monitoring

Fig. 20: Web App authentication

Additionally, we found the web server’s source code
(Figl2I), which is easily decompiled, being in Java.

BMXP3426302 SV328.1dx — Ark

Archive File Settings Help
m Extract - Q Preview D Open Q Find... E—
Name ~ Size Compres®
~ B web 2 Folders, 4 Files
(= 1File
- P71 wwwroot 7 Folders, 3 Files [
- B classes 8 Files
JLjar 12,1 KiB 11,2 KiB
RDE.jar 153,3 KiB 144,0 Ki
SAComm.jar 2973 KB 255,8 Ki
SysDiag.jar 5949 KiB 546,7 Ki
XMLParserjar 51.2 KiB 44,7 KiB
rdelite.jar 114.8KiB 109.3Ki
sysSetup.jar  134,7 KiB 1253 Ki|~
4 »

Fig. 21: Web App source code

For this, we used the CFR| decompiler to look through all
of the .jar’s code, where we found a lot of low level code,
allowing us to manipulate how issued commands are actually
run.


https://www.benf.org/other/cfr/

Furthermore, we found what appeared to be the hard-coded
credentials for accessing the FTP server also running on this

device (Fig[22).

jlalmeida@kali: ~/Downloads/decompiler
File Actions Edit View Help

$ java -jar cfr-8.149.jar RDE.jar —outputdir ./

decompiled/ 2>‘/dew‘nu'Ll

: $ sed -n '71,72p' decompiled/com/transparentfact
ory/rde/sacomm/Rde.java

| private String m_ftpLogin = "sysdiag";
private String m_ftpPassword = "factorycast@schneider”;

Fig. 22: FTP credentials decompiled

In Fig. 23] we show the successful attempt of logging into
PLC2’s FTP server with these credentials.

:~$ ftp 172.27.224.250
Connected to 172.27.224.250.
220 host FTP server (VxWorks 6.4) ready.
Name (172.27.224.250:jose-donato): sysdiag
331 Password required for sysdiag.
Password:
230 User sysdiag logged in.
Remote system type is VxWorks:.
ftp> 1s
200 PORT command successful.
150 Opening ASCII mode data connection for 'file list’'.
drwxruxAwx 1 512 Jan 00:00 wwwroot
drwxrwxAwx 1 512 Jan 00:00 rdt
—rwxrwxAwx 1 190 Jan 00:00 http.ini
—rwxrwxAwx 1 110 Jan 00:00 webloader.ini
~TWXTWXAWX 1 95 Jan 00:00 namspace.dat
—rwxrwxAwx 1 254 Jan 00:00 UserWebFiles.ft

Fig. 23: Successful ftp login

E. Ftp Exploit: Reverse Shell + Phishing

From the previous subsection we have access to the PLC2
via ftp. With this, we quickly found the wwwroot folder that
contains PLC2’s web server (as found in the downloaded
firmware).

In a first approach, we added a file to this folder called
test.htm to check if we could access it in the browser (Fig[24).
This was successful as seen in Fig[25]

200 PORT co
150 Openin
drwxrw

drwxrwxAwx
drwxrwxAwx
drwxrwxAwx
drwxrwxAwx
drwxrwxAwx

connection for "file lis
512

512

drwxrwxAwx

~TWXTWXAWX

~TWXTWXAWX

~TWXTWXAWX

~TWXTWXAWX

~TWXTWXAWX 0 0
2 Transfer complete.
frp> I

1
|
1
1
1
1
drwxrwxAwx 1
1
1
1
1
|
1

Fig. 24: »wwwroot” folder

If we can change the files provided by the web server,
we can easily upload a payload accessible in one endpoint.
We came up with a simple idea to gain full access to the
PLC 2 using what we explained so far and some social
engineering. It is basically a credential harvester, a type of
phishing (Setoolkit):

1) Change the page presented to the employees to include

an warning to update their passwords because a breach
happened

(C

Linux Kali Training Kali Forums NetHunt;

Y Performance 3 Memary |

+ AT

8 0O Inspector [ Conscle [ Debugger {} Style Editor

=IDOCTYPE hrml P L A/WICSOTD HTML 4.8 Transitionals/EN“= eleme

T }

Fig. 25: File added to 172.27.224.250

2) When employees clicked to update the password they
are redirected to a page similar to the one in PLC but
hosted by our machine

3) Employees submit their credentials

Since our host is the one hosting the update password page,
all the requests submitted will be sent to our machine. That
way, we can get sensitive credentials.

In addition, we could also make a user download a payload
made with msfconsole and wait for to run it in their computers.
If successful, we would gain a reverse shell to their machines.

Another attack we propose takes advantage of being able
to upload any file which will be hosted on the web server.
Following the perspective presented in [10], we could build a
payload with msfvenom (another metasploit library) that would
be later uploaded via FTP and served by the web server.
Our machine would listen and once this endpoint was called
(172.27.224.250/payload), it would run custom code on the
web server (PLC) in order to make a reverse shell to our
machine. Again, we did not execute this attack to protect the
testbed since it would involve adding or changing java applets
that the web server is using (possible, as proved through the
page inserted via FTP and displayed on the server).

F. Privilege Escalation

In the previous subsection, we described how we could gain
access to a shell of the PLC2 Since this is a linux system
and it is most likely not running an updated version (updates
often break these machines), we can easily find exploits (in
www.exploit-db.com! or in tools like metasploit) for privilege
escalation, ie, gaining root access.

One of the most popular, due to its efficacy, is dirtyCOW
which exploits a race condition to change the write-protected
letc/passwd (exploit url).

Since we did not want to cause permanent damage in the
testbed, we did not try it. However, the exploited vulnerability


www.exploit-db.com
https://www.exploit-db.com/exploits/40839

existed for over ten years, and provided that the PLC was
running an outdated linux version, it’d most likely have
worked.

Once we had root access to the machine (it could be the
PLC or the employee’s machines infected with the payload
explained in the previous section) we could go even further.

Basing our approach in the Mirai Botnet Attack [11], the
infected systems could be joined together into a “remotely
controlled” network of devices (botnet), used later on to do
a powerful DDoS attack against any system. For example,
the Mirai Attack is estimated to have infected between 1-1.5
million devices [12], so we can imagine how much it can
disrupt even the most robust systems.

However, it is important to note that in our testbed the
internal devices are isolated from the rest of the system (and
the outside) and as such could not join this botnet. This
is a key-characteristic and, therefore, we can conclude that
isolation of the sensitive parts of the industrial systems from
the open network should be always implemented.

The infected employee’s computers would not, most likely,
be in an isolation network and, therefore, could join the botnet
becoming a serious and powerful threat.

V. DISCUSSION

For some vulnerabilities, correction is straightforward - eg.
changing default passwords to strong passwords.

Updating systems is another essential requirement. How-
ever, it can also be extremely challenging, since these systems
are old and fragile. As such, it may not be feasible to update
them, which is the only thing, apart from upgrading the
hardware (expensive), that can prevent a vulnerability like
DirtyCOW.

Firewalls are also important to detect and prevent DDOS at-
tacks or blocking unauthorized parties from accessing devices
that they should not be able to (Role-based access control).

IDS must be implemented to control and keep track of the
state of the network feeding information to reactive systems
that can prevent attacks in real time.

It is important to note that this is an expensive process and
the devices must updated from time to time (depending on
their lifecycle, the majority has usually 10 to 20 years [3])

After some days exploring the system, we found many
vulnerabilities. Since the testbed is representative of real
world-case scenarios, we can conclude that it is a problem
that must be fixed as soon as possible.

VI. CONCLUSION

In this paper we identified numerous vulnerabilities in
an ICS testbed, following a penetration testing procedure.
Through it we observed that industrial systems have a lot of
inherent deficiencies that could lead to catastrophic damages.

For too long has an “ignorance is bliss” approach been taken
when it comes to these systems’ security, without which the
so desired (and prioritized) continuity of service is baseless.

As such, Security By Design and In Depth strategies must
be implemented by organizations, so that the mistakes we have
seen in this paper, and in recent years, stop occurring.

REFERENCES

[1] Rosa, Luis, et al. ”Attacking SCADA systems: A practical perspective.”
2017 IFIP/IEEE Symposium on Integrated Network and Service Manage-
ment (IM). IEEE, 2017.

[2] BMXP3420302 - processor module M340 - max 1024 discrete
+ 256 analog I/O - CANOp https://www.se.com/ww/en/product/
BMXP3420302/processor-module-m340- --max- 1024-discrete- %
2B-256-analog-i-0---canopen/

[3] IEEE Taxonomy - taxonomy_v101.pdf
https://www.ieee.org/content/dam/ieee- org/ieee/web/org/pubs/taxonomy _
v101.pdf

[4] Guru99. Penetration Testing Tutorial: What is PenTest?
https://www.guru99.com/learn-penetration-testing.html

[5] Obregon, Luciana. "Secure architecture for industrial control systems.”
SANS Institute InfoSec Reading Room (2015).

[6] Kushner, David. "The real story of stuxnet.” ieee Spectrum 3.50 (2013):
48-53.

[7] Linux man pages. Nmap Reference Guide

[8] Lyon, Gordon Fyodor. Nmap network scanning: The official Nmap project
guide to network discovery and security scanning. Insecure, 2009.

[9] Inside the Cunning, Unprecedented Hack of  Ukraine’s
Power Grid — WIRED https://www.wired.com/2016/03/
inside-cunning-unprecedented- hack-ukraines-power-grid/

[10] HackTheBox Write-Up — Devel - incOgnito - Medium https://medium.
com/vulnerables/hackthebox-devel-ecf86ct7822f]

[11] What is the Mirai Botnet? — Cloudflare https://www.cloudflare.com/
learning/ddos/glossary/mirai-botnet/

[12] Mapping Mirai: A Botnet Case Study - MalwareTech https://www.
malwaretech.com/2016/10/mapping- mirai-a-botnet-case- study.html

[13] GitHub - digitalbond/Redpoint: Digital Bond’s ICS Enumeration Tools
https://github.com/digitalbond/Redpoint

[14] MODBUS Application Protocol 1 1 b
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf


https://www.se.com/ww/en/product/BMXP3420302/processor-module-m340---max-1024-discrete-%2B-256-analog-i-o---canopen/
https://www.se.com/ww/en/product/BMXP3420302/processor-module-m340---max-1024-discrete-%2B-256-analog-i-o---canopen/
https://www.se.com/ww/en/product/BMXP3420302/processor-module-m340---max-1024-discrete-%2B-256-analog-i-o---canopen/
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/taxonomy_v101.pdf
https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/taxonomy_v101.pdf
https://www.guru99.com/learn-penetration-testing.html
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://medium.com/vulnerables/hackthebox-devel-ecf86cf7822f
https://medium.com/vulnerables/hackthebox-devel-ecf86cf7822f
https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/
https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/
https://www.malwaretech.com/2016/10/mapping-mirai-a-botnet-case-study.html
https://www.malwaretech.com/2016/10/mapping-mirai-a-botnet-case-study.html
https://github.com/digitalbond/Redpoint
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf

	Introduction
	Planning
	Toolset
	Testbed
	Network Access
	Footprint

	Discovery
	Traffic Analysis
	Host Discovery
	Service Detection
	172.27.224.10
	172.27.224.245
	172.27.224.250
	172.27.224.251

	Targeted Scripts
	Zombie Scan

	Attack
	DoS
	MiTM
	Default Password + Out-of-band sources
	Reverse Engineering: Getting access to critical device
	Ftp Exploit: Reverse Shell + Phishing
	Privilege Escalation

	Discussion
	Conclusion
	References

