On the Security of Industrial Control Systems

Defense Strategy for a Representative Testbed

Jodo Almeida*, José Donato'
Departamento de Engenharia Informética
Universidade de Coimbra
*jlalmeida@student.dei.uc.pt, Tdonato@student.dei.uc.pt

Abstract—Industrial Control Systems for critical infrastruc-
tures face extremely sophisticated threats, for which a domain-
specific defense strategy is needed. This involves an iterative
procedure of deploying several layers of complementing security
mechanisms, that are continuously monitored for their efficiency
in mitigating existing threats, and shortcomings with new ones.
In this paper we outline such a strategy for a representative
testbed that was previously penetration-tested, with the goal of
raising awareness to the main concerns one should have when
implementing or iterating upon one.

Index Terms—Industrial control, SCADA systems, Network
security, Computer security

I. INTRODUCTION

Modern Industrial Control Systems (ICS) face common
ICT threats, due to their adoption of such technologies for
increased connectivity, but also highly advanced threats from
the criticality of systems they often control.

In this work we propose a defense strategy for the same
system that we were previously attacking. This obviously goes
against the basic principle of security by design, however this
is a highly weak, vulnerable and outdated system, for which
action must be taken as soon as possible to prevent many of its
possible attacks - for example the over-spinning of its cooling
motor.

Our goal is then to raise awareness for those responsible of
similar ICS, to take action as soon as possible. As we know,
in security, the approach of simply reacting to incidents is
common (“casa roubada, trancas a porta”). This may still
exist in ICS, due to a false sense of security from previous
strategies of airgapping and obfuscation, but recent advances
towards openness and connectivity have made this infeasible in
every way, given the criticality of assets controlled and threats
faced.

With this in mind, we tried to come up with a plan
that would provide defenses to an existing industrial system
without any basic ones set in place, and going off what are
currently the best mechanisms available. It is important to re-
mind that security should be a continuous process, of learning
from past failures but also looking at the present/future for
what could be preempted.

We based ourselves on Lockheed Martin’s Cyber Kill Chain
shown in Fig.1, which outlines the course of action an attacker
must take to successfully carry out the objective:

RECONNAISSANCE

Harvesting email addresses,

conference information, etc.

<]

Delivering weaponized bundle to the
victim via email, web, USB, etc.

WEAPONIZATION

Coupling exploit with backdoor
into deliverable payload

EXPLOITATION

Exploiting a vulnerability to execute

code on victim’s system

COMMAND & CONTROL (G2)

Command channel for remote
manipulation of victim

ACTIONS ON DB.JECTIVES

With ‘Hands on Keyboard' access,
intruders accomplish their original goals

Fig. 1: Cyber Kill chain
Image taken from [3]

Our idea is to develop a plan where we cover and protect
against all the 7 steps of the cyber attacker chain (Fig.1), since
successfully blocking an attack at any one of them, stops it
from carrying out the intended disruption - breaks the chain
[6].

However, we need to be sure that we do not sacri-
fice the availability of the system with the introduction of
performance-degrading security mechanisms, as ICS typically
work under strict latency restrictions.

The paper is structured beginning with background knowl-
edge on threats and controls (Sec.II), followed by a description
of the testbed and its previously identified vulnerabilities
(Sec.III). In IV we described the mechanisms we would deploy
for each step of the kill chain. Following this, we focus
specifically on what we think is a great addition to industrial
systems: virtualization (and more specifically network virtu-
alization with SDN) in section VI. Lastly, in section VII, we
configure and evaluate the deployment of OSSEC as a host-
based IDS, aiming to complement the tools already studied in
the course.

II. BACKGROUND KNOWLEDGE
A. Advanced Persistent Threat

“Well-resourced and trained adversaries that con-
duct multi-year intrusion campaigns targeting highly
sensitive economic, proprietary, ornational secu-
rity information. These adversaries accomplish their
goals using advanced tools and techniques designed
to defeat most conventional computer network de-
fense mechanisms.” [4]

This definition is self-explanatory but this type of threat is
important to us because they are common enemies of Indus-
trial Control Systems. Because these systems provide critical
services, they are the most common targets for cyberterrorism.

One APT involves months of work and combines all the
seven steps of the Cyber Kill Chain (Fig.1).

Stuxnet is the perfect example of this [8]. The attacker
spends weeks or even months in the first step of reconnais-
sance, where they tries to stealthily learn everything possible
about the system concerned, in some cases through espionage
(more on this in Sec.IV-A). The payload that’s developed
is then specific to the target, often exploiting zero-day vul-
nerabilities (previously unknown). This describes well how
exhaustive this type of attacks is and, normally, with the people
behind it behind very well-resourced, eg. governments.

Unlike attacks like ransomware that try to reach everyone,
an APT is targeted/focused on a company/government.

B. Security Control

It’s “all about defending important assets” [PL1]. Field
network devices in ICS like PLCs are responsible for the
operation of often critical infrastructures, for which any form
of malfunction may risk extreme financial repercussions, as
well as the health and safety of some [2].

Alas, some of these assets rely on extremely insecure
protocols that have become industry standard, namely ModBus
(cleartext communications with no authentication). Morever,
the introduction of ICT technology, promoting the benefits of
interconnectivity, has left them extremely exposed.

As such, we need to implement a myriad of security mecha-
nisms to reduce (control) the risk of these threats materializing.
The common approach of simply reacting post-compromise
would be disastrous in these systems [4]. There will obviously
be associated costs, for some quite high, but we need to
consider the cost induced by a successful attack on this type
of infrastructure, which can be devastating.

These controls can follow several courses of action - “detect,
deny, disrupt, degrade, deceive, and destroy” [4]. That is, not
all need to deny attacks, some could just serve to alert of its
(ideally ongoing) occurrence, or others to mislead the attacker
(eg. honeypots).

When we consider an APT, we need to be aware that they
have the ability to bypass most mechanisms [6]. We will need
some to be tailor made for the systems we’re working with -
ICS - and to follow a domain-specific approach when planning
out [2]. Nevertheless this does not mean common mechanisms

aren’t extremely useful to stop the lower-skilled, but higher-
numbered, attackers.

ITII. TESTBED
A. Overview

Testbed models a very simple Industrial Control System in
which we have the same constraint: high availability at the
expense of security.

A

/
[—

I

VFD*

I

Motor

PLC1

Temp Sensor

Fig. 2: Testbed topology.
Image taken from [CDIS-PL2].

We have an Oil Temperature sensor, whose measures are
used by the PLC (located at .250) to adjust the cooling motor’s
frequency to achieve certain speeds (rpm). -

This whole process is supervised through the HMI (human-
machine interface) located at .10.

From the previous assignment, we also know that a honey-
pot emulating an Siemens S7 model is deployed at .245.

After the first assignment, the deficiencies of these systems
are obvious. Despite the existence of one honeypot (further
disclosed by the teacher and effective because we wasted some
time researching it), there are too many characteristics that
makes industrial systems attractive to attackers.

In the next section, we will talk about the vulnerabilities
that stand out (some we find in the first assignment, others
are common in these systems).

B. Vulnerabilities

After we were inside the network, everything was possible:
starting from bringing down critical and choke point devices
like the PLC with simple DDoS attacks to exploiting HMIs
using default credentials.

Below there is a list with some of the vulnerabilities we
found concerning both PLC and HMIs (the most concerning
devices in the system). These have been assigned unique
identifiers, to then be associated with the controls described
in the strategy outline (Sec.IV).

o V1 (Exposed Devices): both but not only these devices
are exposed to any scan when we are inside the network.
Sometimes also outside the network, a quick search on
shodan.io gives us more than 500 results containing the
same PLC model exposed in the public internet:

109.190.2.37

43225171128

Fig. 3: PLC search in shodan.io

It is important to note that this make the profiling process
way easier for the attacker.

V2 (Exposed Services): In addition to these devices
being completely exposed, crucial services are also open
to anyone such as FTP and web server.

V3 (Plaintext Communications): Even though we have
not discovered the entire system topology so far, the
fact that devices communicate in plaintext without any
authentication further facilitates this process. Sniffing the
network, an attacker can easily understand the relation-
ships between the devices and how the system works.
V4 (Unauthenticated Communications): Messages are
not authencations. Furthermore, there are no protections
regarding the ARP protocol. Caches can be easily poi-
soned in order to perform Man in the Middle attacks -
these hijack communications, freely injecting or tamper-
ing with messages.

V5 (Fragile Devices): The fact that these devices have
low processing capacity, makes it impossible not only to
support secure cryptographic algorithms but also vulnera-
ble to denial of service attacks. We saw that with simple
tools such as nping are capable enough to make the
PLC unavailable as long as the attacker wants.

V6 (Default Crendentials): Normally, services the open
services such as FTP or web servers have some kind
of authentication (most frequently username+password).
This brings a false sense of security since in most cases
default credentials easily found in internet (for example
in the product’s documentation) are used.

V7 (Legacy Systems): The majority of these systems
are legacy and vulnerable. For the HMI that uses some
version of windows we found vulnerabilities related to
SMB (eternal blue). Regarding the PLC, after we found
out what kind of linux version we used we also dis-
covered several possible exploits (https://www.exploit-db.
com/exploits/40847). This is a major problem since up-
dating these devices require vendor certification and can
potentially break them, meanwhile replacing requires
money and stopping the industrial process (and stopping
production means losses).

V8 (System Integrity): There are not any type of file
integrity checking in any device. This makes it possible
for an attacker to reprogram the functionality of the

devices without being detected (we suggested this in the
first assignment when proposed to change the web server
in the PLC to contain malicious code and infect the
employees).
As if these vulnerabilities were not enough, we still think
the following ones are common in these type of systems [9]
and therefore we need to fix them as well:

¢ V9 (No Virtualization): There is not any kind of seg-
mentation in the network. This means that the industrial
critical process is not separated from the rest at least. If
an attacker gets access to one area of the network, can
communicate without a problem with all the rest (if the
devices are exposed).

e V10 (No Monitoring): Lack of network audit and mon-
itoring. All actions (and most importantly the suspicious
ones) must be logged for further analysis.

e V11 (Lacking Access Control): Passwords aren’t
enough... User permissions and access controls are not
well defined nor enforced and logged.

IV. STRATEGY

A single defense layer is often described with the castle
and moat analogy [5] - where it’s considered that all intruders
would have been barred entrance from the sole existing gate,
and as such no further checks are carried out once inside (eg.
only a firewall as defense mechanism).

However, as we know, this is not feasible in computer
security. The often huge attack surfaces mean there are several
such gates we have to defend, and the fact that attacks are ever-
changing means that a single check cannot hope to detect and
block all malicious attempts.

What we need are several layers of walls covering the
whole attack surface, where each successive gate is tailored to
stopping what would be the attacker’s next step. Furthermore,
a large percentage of attackers are insiders, and so perimeter
defense is not enough [2].

Lockheed Martin’s Cyber Kill Chain [3] models such steps
that an Advance Persistent Threat carries out, helping us
understand the behaviours we’re going up against.

Our goal is to maximize our chances of intercepting intru-
sion attempts [5], blocking attacks as soon as possible in the
killchain, while being insured by the controls implemented for
further steps. Also, we want to be able to learn everything we
can about the attacker and then further improve the security
of the system (this is possible with honeypots explained later
in subsection IV-A).

Nonetheless, persistent attackers will eventually find a way
through [2].

If the attack can’t be blocked, it should at least be possible
to detect and delay/contain it long enough for the incident
response team to benefit from the insight obtained.

Some controls are applicable with small specificities to
several phases, as is the case of virtualization. This one being
so important, will be thoroughly discussed in Sec.VI.

https://www.exploit-db.com/exploits/40847
https://www.exploit-db.com/exploits/40847

A. Reconnaissance

During the recon phase, the attacker attempts to map out
the system’s attack surface, namely exposed hosts and their
services, with network exploration tools.

This is a mostly passive endeavour, in order to find out
a target for which to develop the exploiting payload (cf.
Weaponization). That is, for which we suspect exists an
exploitable vulnerability.

Typical substeps for this stage include:

1) host discovery: could just be randomly scanning the
internet, or identifying an organization’s IP addresses
from DNS records and other public sources. and finding
which are responsive.

2) target profilling: port scanning for runnign services
which we can fingerprint based on their responses

3) vulnerability search: search repositories that compile
vulnerabilities (many eg. cve-search.org, cve.mitre.org,
etc). ICS are typically made up of legacy systems, that
tend not to be updated for fear of disturbing continuity
of service. As such many should be running vulnerable
software (including the ones in our testbed III).

Nevertheless, with these tools it may also be possible to
straightaway carry out denial of services attacks to exposed
devices. This is a great threat if these consist of field network
devices like PLCs, with limited computational power and
whose unavailability will have severe impact in the whole
system.

1) Firewall: communications with the outside, if necessary,
should be completely mediated by a packet filtering router
and only be allowed for selected devices - namely those in
the enterprise network. One thing’s for sure: we do not want
our PLCs showing up in Shodan or similar search engines for
exposed devices.

For Linux systems one can use [PTables, where simple rules
are defined that will match data in the packet headers. It can
also keep track of connections with state, through the use of
modules, and can integrate with Intrusion Detection Systems
(IDS).

2) VPN: access to field network devices should be con-
trolled (not direct) and authenticated. Also, access control is
important (more on this later in Subsection IV-C3).

3) NIDS: in order to elicit fingerprintable responses, tools
like Nmap often send malformed packets. There’s often no
need to support these in normal operation, and furthermore
they may break the fragile TCP/IP stack implementations of
many field network devices. These tools, like Snort, should be
deployed so as not to increase latency, ie. in passive mode and
through a monitor port so as to avoid a single point-of-failure
for the network’s traffic. This can be deployed with a managed
switch or a TAP.

4) Honeypots: we want these to appear as if they were
legitimate targets for the attacker, for example by exposing
ports of services with similar fingerprints to those found in
some PLC/HMI models. Also, they should be integrated with
other components, emulating communications, to make them
credible.

The goal is then for subsequent steps to be carried out
against them instead of the real devices essential to the
infrastructure continuity of operation. Meanwhile an incident
response team has been made aware of this occurrence, which
signifies an intrusion attempt as these devices do not serve any
purpose for the actual service provided (no actual PLC,etc is
expected to communicate with it).

From the attacker’s perspective, it’s a tradeoff between how
much we interact with the device to determine whether it’s an
honeypot or not.

Conpot lets us deploy extensible ICS/SCADA honeypots
[13]. These can be setup to act as close as possible to
realistic devices, including the introduction of artificial delays
in response times [I3]. Together, these emulate complex
infrastructures.

Through logs we are then able to reconstruct an attacker’s
action, to try to derive their skill level and intents. Learning
from the attackers makes it possible not only to react to the
attack but to improve or develop new defense mechanisms.

Software-Defined Networking can also be used to imple-
ment Honeypots. This will be further explained in section VI.

5) Tar Pit: slow down requests until connection is authen-
ticated. One possible way is to increase the response time
exponencial until the other party is authenticated - “takes
over unused IP addresses and answers to connection attempts”
[CDIS-T4].

B. Weaponization

If successful in identifying a vulnerability, the attacker (if
an APT) then develops the payload with which it to carry it
out the attempt to compromise some system resource.

Though for less sophisticated attacks, common automated
tools will most likely be employed.

If through a soft target, it will not be immediate.

1) Secure Services: use of secure versions of common
services like remote access - eg. ssh instead of telnet.
Legacy services often lacked any security consideration must
be ditched for security-focused ones.

2) Patched Services: even still, vulnerabilities are in-
evitable in minimally complex software. Furthermore, being
secure at a certain point in time, does not make it a given that
it will remain as such in the future, since new zero-day exploits
are constantly discovered, some exploiting what were not
considered as vulnerabilities beforehand. Therefore, we must
consider services that are actively supported with patches, and
strive to keep them updated as much as possible - unfortunately
compatibility issues may arise. In those situations, we need to
analyse the risk trade-off and dependent on the calculated risk
vs cost of change, keep the software out of date or not.

3) Threat Intelligence: a risk management approach
should be adopted, keeping track of the ever-changing threat
landscape. APTs may be highly innovative and difficult to
predict, but less sophisticated attacks are often trend-based,
attempting to replicate previous successes.

cve-search.org
cve.mitre.org

4) Security Awareness [5]: soft targets like employees
or subcontractors should made aware of existing threats and
follow an organization security policy. Security workshops are
mandatory to ensure that everyone in the company is aware
of the security problems that exist in these environments.

C. Delivery

In principle, if during recon the attacker was able to identify
a given vulnerability, it’s because they had to the specific
service in that system. The main challenge is then to transfer
it while remaining undetected.

Must consider soft targets which are often favoured by
attackers due to their easier exploitability compared to ‘busting
through the front door’. This is the main reason why Security
Awareness talked in Subsection IV-B4 is important.

1) Airgapping: wherein the system is isolated from any
outside source, would certainly see an appetizing and seem-
ingly definitive measure. Nevertheless this is extremely im-
practical - functionalities like remote access are desirable for
maintenance - and would just lead to a false sense of security,
since the system could still be compromised through the
aforementioned soft targets (that end up physically delivering
the payload).

2) Firewall: , application-level firewalls would be desired
for exposed services, namely the web servers which were
identified in the testbed. For these we could implement web
application firewalls in a separate machine operating as a
reverse proxy.

3) Access Control: communications should be authenti-
cated, as well as logged - should not rule out the possibility
of an insider being the attacker.

4) NIDS: an IDS like Snort with signatures for attacks
could block common (important caveat) attacks

5) Unique credentials: - change all default credentials
as these are commonly compiled into dictionaries used for
automatically bruteforcing authentication. With remote access
the attacker is free to deliver a generic payload. Passwords
should be strong and unique to each device, so as to make
it difficult to compromise each one. Furthermore, failed login
attempts should be monitored and throttled.

6) USB Drives: are a common attack vector, where those
owned by employees and/or subcontractors are infected prior
to being used inside the infrastructure’s network.

7) Spam filters: like Apache SpamAssassin, should be
deployed for the company’s email server. Targetted messages
aiming to compromise the employees’ machines are common
(spearfishing), and aim to use them as a launching point for
the attack (thus bypassing the firewall).

8) Security Awareness: to complement these last two con-
trols, including training and email testing for employees [0].

D. Exploitation

1) Attack surface: should as small as possible, namely by
only exposing the absolutely necessary services. With adequate
access control in place, one could have the PLC/HMI web
servers running on localhost only.

2) Vulnerability Management: all systems should be con-
tinuously assessed with vulnerability scanners. OpenVAS is an
example of such a tool, and is based on a database of NVTs
(Network Vulnerability Tests) to assess their existence. Scan
tasks can be scheduled to periodically run. Reports should
be analysed to dismiss false positives, and for the remaining,
controls should be selected based on the associated risk.

3) Cooperation among Organizations: by sharing knowl-
edge learned in the post-incident analysis, is essential so that
similar attack vectors aren’t consistently reapplied to new
targets. Learning the exploit’s procedure from system logs is
one such example, though some companies may be reluctant
to share possibly sensitive information.

E. Installation

The attacker attempts to install a persistent backdoor [6] for
remote access, and from which to exfiltrate data for further
recon.

1) Host-based IDS: like OSSEC, whose deployment is
described in Sec.VII, can run integrity checks on key files
to verify they remain unchanged, detect rootkits, and allow
communications with only a select few IPs - which for field
network devices should consist solely of local addresses.

If malware is installed to be available through the exposed
web servers, that would be a watering hole attack [6] (we’d
wait for a legitimate user to go drink from it).

2) Antivirus: to detect rootkits or other types of malware. It
is importante to note that they can only be installed in certain
devices because of the latency contraints (devices may not be
powerful enough to support this type of software).

Another alternative is application whitelisting, i.e., only
allow installations of applications that are whitelisted.

3) Least Privilege: for services running, especially mini-
mize those running with administrator privileges [6].

4) Certificate validation before installations [6]: if an
attacker is able to poison the DNS cache, packages or updates
would be downloaded from malicious sources.

E. Command & Control

From the recon step the attacker will most likely only have
a limited view of the system. In this step, it then maps it out
with the newly obtained inside access, reporting back gathered
intel so as to better coordinate the final attack - the one meant
to seriously disrupt the infrastructure.

1) Monitoring Traffic: log packets, and be particularly
wary of outgoing traffic. Much of this step involves ex-
filtrating the intel gathered back to the attacker, so as to
better coordinate the final strike. A common vector for this
is DNS tunnelling, as this protocol is often not considered
in firewalls. In the field network, communications should be
quite monotonous and easy to implement rules for what is their
normal behaviour. However, we need to care for false positives,
as dropping legitimate traffic could have serious consequences
- need to run in passive mode.

2) Bumps-in-the-wire: to encrypt/authenticate traffic so
communications are imperceptible to an attacker. Even though
these are legacy devices that may not support it due to pro-
tocol/computational restrictions, ad-hoc devices named bump-
in-the-wire exist. These can be used to implement IPSec on
behalf of hosts [15] (Fig.4) - which encrypts and authenticates
traffic at the network/IP level, transparently and tranversally
to applications. Though we need to be careful with the latency
introduced.

- - e - -
Secure IP Datagrams.
FPGA based FPGA based
N Internet | .
IPSec device for R1 S 1PSec device for R2
Rl R2
Network1 Network2

Fig. 4: Bump-in-the-wire deployment
Image taken from [16]

3) Honeypots: are a great tool once again, to fool an
attacker with simulated HMI - PLC communications.

4) Virtualization: to contain potentially compromised de-
vices, network should be segmented, ideally with virtualization
as described in Sec.VI. This is because the initially compro-
mised device could be in the business network, for which it’1l
still have to propagate itself to field devices where the real
damage is done to the infrastructure.

G. Actions on Objectives

This is the step where the original goal of the APT is carried
out. What ensues depends on the motivation [5], if terrorism
then the goal is to disrupt or destroy the system, if financial
the goal is to ask for ransom (with the promise of returning
sensitive data or getting the process back up and running).

The advantage of our security approach according to the
kill chain, is that the attacker has to have been successful in
all 6 previous steps, meanwhile we only need to have blocked
it at one [0].

1) Shadow Security Unit: Device placed in parallel with
PLC with access to its state and interactions. Therefore, it has
access to all the traffic with TAP, knows the exact values of the
registers and is able to detect unusual behaviours. The main
goal is to detect problems even when the reports to HMI are
altered.

2) NIDS: detect issuing of anomalous commands through
SCADA specific rules - for Snort we have (https://github.com/
digitalbond/Quickdraw-Snort).

3) SIEM: use snort and tripwire outputs to feed a SIEM
capable to react to attacks in real time. However, this step is
hard because one bad choice of the SIEM tool can compromise
the availability of the entire system.

4) Incident Response Team and Plan: if everything else
fails and the attack is successful, a team must be in place to
contain the impact it as soon as possible.

5) Secure Logging: to be able to reconstruct steps under-
took by the attacker, and so strive to prevent it from happening
again.

6) Redundancy: of PLC to implement voting algorithms,
where the majority decides the correct command issued. Thus,
if an attacker compromises one to send malicious commands,
it will not impact as long as the remaining continue to
function normally. It will also signify a failure that can then
be investigated to assess whether it was some hardware fault,
or rather a malicious attack (and fix later). However, the
costs associated with this control can make it impossible to
implement. A possible solution would be to virtualize the
PLCs despite its possible performance disadvantages.

H. Testbed

We can now map these controls, into the testbed’s vulnera-
bilities previously enumerated in Sec.III-B.

Even though all of those were applicable to our system,
we will take a risk management approach, in that only those
whose cost outweighs the risk are selected. For this, we must
consider the impact and probability of the vulnerabilities being
exploited, and the nature of threats we would be facing - quite
simple system so unlikely to be the target of any persistent
threat (at most attempts to compromise devices to take part in
a botnet).

Vulnerability Step | Control C
V1 (Exposed Devices) 1 Firewall Sec.IV-Al
V2 (Exposed Services) 2 Secure Services Sec.IV-BI
V2 (Exposed Services) 2 Patched Services Sec.IV-B2
V1/V2 2 Network S ion Sec.VI (through virtualization)
V3 (Plaintext Communications) 6 Bump-in-the-wire Sec.IV-F2
V4 (Unauth’ed Communications) | 6 Bump-in-the-wire Sec.IV-F2
V5 (Fragile Devices) 6 Hardware Virtualization Sec.VI
V5 (Fragile Devices) 1 Honeypots iec.[V—AA‘i (ap})licab]e o other steps)
ecoys, give time to react
V6 (Default Crendentials) 3 Unique credentials Sec-IV-C5
V7 (Legacy Systems) 4 Vulnerability M: Sec.IV-D2
V8 (System Integrity) 5 HIDS Sec.IV-E1
V9 (No Virtualization) Sec.VI
V10 (No Monitoring) 6 Monitoring Sec.IV-FI
V10 (No Monitoring) 7 SIEM Sec.IV-G3
11 (Lacking Access Control) 3 Access Control Sec.IV-C3

TABLE I: Mapping of testbed vulnerabilities to controls

V. ADDITIONAL REMARKS

Before concluding this section, it’s important to reiterate that
once controls have been selected and deployed, they should not
be set in stone.

Their efficiency in stopping attempts should be continuously
measured, ideally not relying only on actual attacks, but also
on penetration testing and red team exercises performed by
outsiders.

These either serve to increase our confidence that everything
is well setup, or better yet (and more likely) to identify holes
in our defense.

1) Post-Analysis: is what allows us to learn from previous
mistakes. By understanding what went wrong, we can devise
a plan to rectify it, once again highlighting the need for
reiterating the defense strategy.

Through all the logging mechanisms that should be in place,
we can then gather:

https://github.com/digitalbond/Quickdraw-Snort
https://github.com/digitalbond/Quickdraw-Snort

« arecreation of the steps the attacker went through, so we
can better model them. For this we resort to the analysis
of logs and packets.

« identify the (soft) targets and their exploited vulnerabil-
ities, to understand how they were able to execute one or
more of the killchain’s steps.

o from their targets we can also try to extrapolate their
motivations and what in the system they consider as
valuable. If the attack was unsuccessful, it is important
to understand what the impact would have been.

« through forensics we could try to identify the attackers,
for example by discovering the C2 infrastructure through
malware analysis [0]

+ damage assessment, including checking that no device
remains compromised

With this improvement process, the goal is for attacks to be
stopped increasingly earlier in the killchain over time [7].

2) OODA Loop: helps us take the best decisions possible,
based on what we learned from post-analysis.

It’s an acronym of the following steps, executed in a loop:

e Observe for information to help us make decisions (par-
ticularly the outcomes of previous decisions)

¢ Orient - process this information

« Decide on the best option available, but be open to adjust
if it proves to not have been the best solution

o Act and monitor results to learn from them (do not repeat
mistakes)

3) Risk Management: - a risk management process is
essential to identify threats to assets, and the costs the organi-
zation may face if compromised. This can be used to motivate
corporate leadership to invest in security, which is a common
challenge.

4) Knowledge Sharing: among organizations, of attacks
they’ve faced and conclusions that were taken.

VI. VIRTUALIZATION

Virtualization is becoming a standard when developing big
systems and it would fit perfectly in our plan. We did not
include it in the steps because it would require lot of time and
money to make it possible in our testbed. Nevertheless, it is
important to explain this scenario.

It is important to separate the three security zones of the
company each one with different strategies and monitored
perimeters:

o IT department
o Operations
o Field

With virtual LANs (VLANs) we can easily implement such
scenario, each zone in a different VLANSs resulting in a safer
and segmented network.

When is needed to communications between zones traffic
must pass through firewall and IDS/IPS. An easy scenario
of communication between zones is, for example, the com-
munications between the HMI (Operations zone) and the
PLC/Sensors (Field zone). This traffic must be monitored

to prevent MiTM attacks presented in Subsection III-B, for
example.

If the traffic is not whitelisted must set off alarms and
wait for security incidents response team. Note that this is
not critical since if the communication is not whitelisted it is
because the communication is not strictly necessary for the
industrial process so it does not jeopardize the availability of
the system.

Furthermore, by default field devices are highly interdepen-
dent, where failure in one has a cascade effect. This multiplies
the attack’s potential impact and makes it harder to repair it
back up.

Stuxnet attack destroyed one-fifth of Iranian centrifuges
[14]. With virtualization and the right configurations the virus
could not propagate that fast. Network segmentation with
virtual LAN could easily have prevented this.

With this example it is easy to understand that if an attacker
gains access to one area of the network, without network
segmentation the cascade effect can be catastrophic.

Also, we need to talk about virtualizing the network with
Software-Defined Networking (SDN).

With SDN we can implement data diodes [17], i.e., have
all the communications only in one direction. Without bidi-
rectional communications, lot of attacks would be prevented.

cum/
—

Mmau;mmy
>

<
E: WGATED
) DATA TRANSFER >
T0 EXTERNAL
USERS

Al &

\

. SOURCE

CYBER
THREAT

N

PROTECTED NETWORK

REMOTE MOMTUBIN£
o
DESTINATION

Fig. 5: Data Diode example. Image taken from [1§]

In fact, to be compliant with Evaluation Assurance Level 7,
the highest Common Criteria level, implementing data-diodes
is strictly necessary.

Another perfect use case for SDN are honeypots. When the
traffic reaches SDN routers if it is not whitelisted (therefore
suspicious) can be immediately redirected to a honeypot
(talked in more detail in Subsection IV-A4). The image below
explains this:

Intelligent Hponeypot app

Suspicious?
{ tYes) [_.-
forward
packet (P-3)
T
! Y ¥
| Controller |

redirect
packet to

| arse
(P-iy O haneypot

packet

P-fh

web service
apen 80

R% Send RST Packet [y,
penFIow(o = S

itch { e
L i, S
t 4o 0st B

NN
$-1) Send Packet to
Host B: 443 EOEt &
X (§-§ Tend Pacﬁa to

Hast B: 445 port
Attacker A

{F-1} Add: A->B: Forward

{F-2} Add: A ->B: Redirect

Flow table Honsypat H

Fig. 6: Honeypot example. Image taken from [19]

Although it is not directly related to the assignment, the
advantages of virtualization are not only security-related. If
the company grows and there is a higher demand with vir-
tualization is as easy as setting up a new virtual machine or
more resources to the ones that already exist. If we need more
HMIs because there are more employees we can just clone the
virtual machines containing the HMIs. When thinking about
the low level devices of the process (PLC and Sensors), the
task is more difficult.

VII. OSSEC
A. Configuration

Since we already used both Snort and Honeycon in course
classes, we tried to choose a tool that would integrate well with
them and help us achieve the steps explained in the previous
sections.

After some research, we conclude that OSSEC [10] and
tripwire [11] would be great tools (in addition to honeycon
and snort) to implement the controls talked so far. “OSSEC
is an Open Source Host-based Intrusion Detection System
that performs log analysis, file integrity checking, policy
monitoring, rootkit detection, real-time alerting and active
response” [10].

In OSSEC can configure multiple rules, for example, we
can implement file integrity rules to check if any file inside
/var/www was changed and prevent watering hole attacks:

<syscheck>
«— Frequency that syscheck is executed - checking every 2 hours —»
<frequency>7200</ frequency>

¢— Directories to check (perform all possible verifications) —

<directories report_changes="yes" realtime="yes" check_all="yes">/etc,/usr/bin,/usr/sbin</
directories>

<directories report_changes="yes" realtime="yes" check_all="yes">/var/ww,/bin,/sbin</dire
ctories>

Fig. 7: OSSEC rules to report changes

Since APTs take normally months and this attack is com-
plex, checking every two hours for integrity changes should
be enough to detect and stop this attack on time.

ossec
syscheck_new_entry

critical files were changed
syscheck,

Fig. 8: OSSEC file integrity rule

Tripwire is “a file integrity checker for UNIX systems”
[11]. Therefore, tripwire is a simple but powerful tool. We
can configure it to detect changes in any folder in the system:

rulename = "Web server changes”,
severity= $(SIG_HI)

— $(SEC_CRIT);

/var/w

Fig. 9: Configurations to detect web server changes

Tripwire is not automatic. Therefore, we can set up a
cronjob to run every two hours to detect file changes.

sudo crontab -e -u root
0 x/2 x » » tripwire —--check --email-report #add
this line to the file

Also, we can get email notifications with the reports to the
security team with:

tripwire —--test --email security@team.com

emailto = security@team.com # add this in twpol.txt
config file

sudo twadmin -m P /etc/tripwire/twpol.txt

sudo tripwire --init

SpamAssassin [12] would be a great addition to the system
since it would reduce the likelihood of the employees getting
attacked with phishing IV-C7.

B. Deployment

Of course we installed OSSEC locally on our machine in
the system but in reality we would choose “server” to analyse
all critical devices in the network at the same time: PLC and
HMI.

You have these installation options: server, agent, local, or hybrid.

- If you choose 'server', you will be able to analyze all
the logs, create e-mail notifications and responses,
and also receive logs from remote syslog machines and
from systems running the 'agents' (from where traffic
is sent encrypted to the server).

If you choose 'agent'(client), you will be able to read
local files (from syslog, snort, apache, etc) and forward
them (encrypted) to the server for analysis.

If you choose 'local', you will be able to do everything
the server does, except receiving remote messages from
the agents or external syslog devices.

If you choose 'hybrid', you get the 'local' installation
plus the 'agent' installation.

Choose 'server' if you are setting up a log/analysis server.
Choose 'agent' if you have another machine to run as a log
server and want to forward the logs to the server for analysis.
(ideal for webservers, database servers ,etc)

Choose 'local' if you only have one system to monitor.

Choose 'hybrid' if you want this standalone system to analyze
local logs before forwarding alerts to another server.

Fig. 10: OSSEC installation options

After OSSEC is installed and the configurations from pre-
vious section are done, we just need to start it:

/var/ossec/bin/ossec-control start

To install Tripwire, the following commands were used:

sudo apt install tripwire

changes in twpol.txt

sudo twadmin -m P /etc/tripwire/twpol.txt
sudo tripwire --init

sudo tripwire --check

C. Evaluation

OSSEC uses signatures to detect rootkits which makes it
efficient to report them in real time. Therefore, if a rootkit or
other similar malware were installed in the devices, OSSEC
would promptly detect them and alert the response team. We
did not try this because we were worried about the negative
effects of installing a rootkit in the machine hosted in the
course hypervisor. [20] is a good resource to check this in
action.

However, we can see a few useful alerts that OSSEC pro-
vides, for example, when users try to perform root operations:

** Alert 1592760090.2027: - syslog,sudo

2020 Jun 21 18:21:30 kali—»/var/log/auth.log

Rule: 5402 (level 3) — 'Successful sudo to ROOT executed'

Jun 21 18:21:29 kali sudo: jose-donato : TTY=pts/@ ; PWD=unknown ; USER=roo
t ; COMMAND=/usr/bin/su -

** Alert 1592760090.2273: - pam,syslog,authentication_success,
2020 Jun 21 18:21:30 kali—»/var/log/auth.log

Rule: 5501 (level 3) — 'Login session opened.'
Jun 21 18:21:29 kali sudo: pam_unix(sudo:session): session opened for user
root by (uid=0)

** Alert 1592760090.2521: - pam,syslog,authentication_success,
2020 Jun 21 18:21:30 kali—»/var/log/auth.log
Rule: 5501 (level 3) — 'Login session opened.'

Fig. 11: OSSEC output

To evaluate tripwire the process was straightforward and
simple. We tried to make changes to the folders that tripwire
is configured to keep track of. In our case, the obvious use

case is the web server folder to prevent watering hole attacks
talked before:

rootakali:/etc/tripwire# cd /var/www
root@kali:/var/www# touch test.txt

rootakali:/var/www# echo "<hi>test integrity</h1>" > test.txt
rootakali:/var/ww# tripwire —chec

Fig. 12: Tripwire: Changes to evaluate configurations

Lastly, checking tripwire’s report we can see that the
changes were reported and need further analysis to determine
whether they are legitimate or not:

* Webserver changes
(/var/wm)

Total objects scanned: 1
Total violations found: 1

Object Summary

Rule Name: Webserver changes (/var/www)
Severity Level: 100

Fig. 13: Tripwire: Changes detected

VIII. CONCLUSION

In this paper we laid out a security strategy to cover all
of the exhaustive steps that an Advanced Persistent Threat
follows - the most common and complex attacks against
Industrial Control Systems.

Its defense in depth approach maximizes the chances of
detecting and stopping an attack, and even though it should
ideally be applied at the beginning of the system’s design
(where there’s increased freedom in what/how to implement),
it’s never too late, as security will always remain an iterative
process of fine-tuning existing mechanisms and reacting to
increasingly complex threats.

REFERENCES

[1] Rosa, Lufs, et al. "Attacking SCADA systems: A practical perspective.”
2017 IFIP/IEEE Symposium on Integrated Network and Service Manage-
ment (IM). IEEE, 2017.

[2] Maglaras, L. A., Kim, K. H., Janicke, H., Ferrag, M. A., Rallis, S.,
Fragkou, P, ... & Cruz, T. J. (2018). Cyber security of critical infras-
tructures. Ict Express, 4(1), 42-45.

[3] Cyber Kill Chain® | Lockheed Martin
https://www.lockheedmartin.com/en-us/capabilities/cyber/
cyber-kill-chain.html

[4] Hutchins, E. M., Cloppert, M. J., & Amin, R. M. (2011). Intelligence-
driven computer network defense informed by analysis of adversary
campaigns and intrusion kill chains. Leading Issues in Information
Warfare & Security Research, 1(1), 80.

[5] Lance Spitzner. Applying Security Awareness to the Cyber Kill Chain |
SANS Security Awareness
https://www.sans.org/security-awareness-training/blog/
applying-security-awareness-cyber-kill-chain

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.sans.org/security-awareness-training/blog/applying-security-awareness-cyber-kill-chain
https://www.sans.org/security-awareness-training/blog/applying-security-awareness-cyber-kill-chain

[6] Lockheed Martin. Applying Cyber Kill Chain@® Methodology
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/
documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf

[7] Lockheed Martin. Seven Ways to Apply the Cyber Kill Chain® with
a Threat Intelligence Platform https://www.lockheedmartin.com/content/
dam/lockheed- martin/rms/documents/cyber/Seven_Ways_to_Apply_the_
Cyber_Kill_Chain_with_a_Threat_Intelligence_Platform.pdf

[8] Assante, Michael J., and Robert M. Lee. "The industrial control system
cyber kill chain.” SANS Institute InfoSec Reading Room 1 (2015).

[9] Nelson, Trent, and May Chaffin. ”Common cybersecurity vulnerabilities
in industrial control systems.” Control systems security program (2011).

[10] OSSEC. https://github.com/ossec/ossec-hids

[11] tripwire(8) - Linux man page https://linux.die.net/man/8/tripwire

[12] Apache SpamAssassin: Welcome https://spamassassin.apache.org

[13] Conpot. http://conpot.org/

[14] Throwback Thursday: Whatever happened to Stuxnet? —
Synopsys https://www.synopsys.com/blogs/software-security/
whatever-happened- to-stuxnet/

[15] Keromytis, A. D., & Wright, J. L. (2000, June). Transparent Network
Security Policy Enforcement. In USENIX Annual Technical Conference,
FREENIX Track (pp. 215-226).

[16] Newe, T., Rao, M., Toal, D., Dooly, G., Omerdic, E., & Mathur, A.
(2017). Efficient and High Speed FPGA Bump in the Wire Implementa-
tion for Data Integrity and Confidentiality Services in the IoT. In Sensors
for Everyday Life (pp. 259-285). Springer, Cham.

[17] de Freitas, Miguel Borges, et al. "SDN-enabled virtual data diode.”
Computer Security. Springer, Cham, 2018. 102-118.

[18] Oregon Systems — Build the Best Technology with our Expertise https:
/Iwww.oregon-systems.com/data.html

[19] Shin, Seungwon, et al. "Enhancing network security through software
defined networking (SDN).” 2016 25th international conference on com-
puter communication and networks (ICCCN). IEEE, 2016.

[20] OSSEC demo Rootkit detection - YouTube https://youtu.be/
Hi22VaVFGbQ

https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Seven_Ways_to_Apply_the_Cyber_Kill_Chain_with_a_Threat_Intelligence_Platform.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Seven_Ways_to_Apply_the_Cyber_Kill_Chain_with_a_Threat_Intelligence_Platform.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Seven_Ways_to_Apply_the_Cyber_Kill_Chain_with_a_Threat_Intelligence_Platform.pdf
https://github.com/ossec/ossec-hids
https://linux.die.net/man/8/tripwire
https://spamassassin.apache.org
http://conpot.org/
https://www.synopsys.com/blogs/software-security/whatever-happened-to-stuxnet/
https://www.synopsys.com/blogs/software-security/whatever-happened-to-stuxnet/
https://www.oregon-systems.com/data.html
https://www.oregon-systems.com/data.html
https://youtu.be/Hi22VaVFGbQ
https://youtu.be/Hi22VaVFGbQ

	Introduction
	Background Knowledge
	Advanced Persistent Threat
	Security Control

	Testbed
	Overview
	Vulnerabilities

	Strategy
	Reconnaissance
	Firewall
	VPN
	NIDS
	Honeypots
	Tar Pit

	Weaponization
	Secure Services
	Patched Services
	Threat Intelligence
	Security Awareness killchainsans

	Delivery
	Airgapping
	Firewall
	Access Control
	NIDS
	Unique credentials
	USB Drives
	Spam filters
	Security Awareness

	Exploitation
	Attack surface
	Vulnerability Management
	Cooperation among Organizations

	Installation
	Host-based IDS
	Antivirus
	Least Privilege
	Certificate validation before installations killchainmethodology

	Command & Control
	Monitoring Traffic
	Bumps-in-the-wire
	Honeypots
	Virtualization

	Actions on Objectives
	Shadow Security Unit
	NIDS
	SIEM
	Incident Response Team and Plan
	Secure Logging
	Redundancy

	Testbed

	Additional Remarks
	Post-Analysis
	OODA Loop
	Risk Management
	Knowledge Sharing

	Virtualization
	OSSEC
	Configuration
	Deployment
	Evaluation

	Conclusion
	References

