Public-key Infrastructure - CRY Assignment #2

José Donato, donato@student.dei.uc.pt, 2016225043

Abstract—Public-key infrastructures (PKIs) is what make asymmetric
cryptography possible. If there were no PKIs we couldn’t be sure
that the public key of a person really belongs to the person claiming
that. However, there is a big problem: these infrastructures rely on a
Centralized Certification Authority and we need to trust this Authority.
Blockchain applications are trying to decrentralize products that were
before centralized. It is happening with payments, supply chains and
many others. What if we try to decentralize PKIs? [1]

I Introduction

In this assignment I tried to provide a proof of concept of a
blockchain-based Public-key infrastructure. I start by explaining, in
a first part, some core fundamentals about PKIs and blockchain.
Then, in a second part, I show the application developed with
explanations about its implementation. The application is live on:
https://pki-frontend.now.sh/.

II Fundamentals

II-A Public-key Infrastructures

This type of infrastructures makes public-key cryptography possi-
ble. It handles the authentication of identities over the internet, i.e.,
imagine a person Bob that claims to own a certain public key. It is
the PKI that tells us if we can trust that this certain key belongs
to Bob or not. Each PKI has one or more Certification Authorities
and is this centralized component that emit and keep record of the
certificates (more on certificates on the next section) [2].

II-B PKI - Important Components

Certificates are the component that contains all the information
about a public key and its owner. This information includes the
validity of the certificate, i.e., until when it is valid. It also includes
other important details such as which is the usage of the certificate
or which Certification Authority signed it.

As said before, the Certification Authorities are the entities that
sign and emit the certificates.

Registration Authorities are the ones responsible for validating the
identity of the users.

Finally, there are two big datastores. One contains all the active
certificates and the other contains the ones revoked or non-active and
other important information.

II-C Blockchain

A blockchain, as the name implies, is a chain of blocks. The first
block is connected to the second one (and the second has an indication
of the first block, normally the hash of the previous block), the second
one is connected to the third (and the third block has an indication
of the second) and so on. This way, they are connected in both ways.
Because of this strong connection between the blocks, it is impossible
to change them in a blockchain.

Transposing the PKI to this environment, each block could contain
one or more certificates. This way, we would have a decentralized,
immutable and trustable store of certificates. It is a possible imple-
mentation for PKIs.

III Application
III-A Introduction

The application is all done with a type-safe language: TypeScript
(https://www.typescriptlang.org/).

As normal in web applications, it is separated in a backend and
frontend:

o a backend server done with Apollo GraphQL (https://www.
apollographql.com/), Express (https://expressjs.com/) and Type-
orm (https://typeorm.io/). In the backend I developed a simple
blockchain to store certificates.

« frontend was done using React]S, a frontend framework (https:
/lreactjs.org/), and consumes an apollo graphQL API with the
help of apollo boost client (https://www.apollographql.com/docs/
react/get-started/).

Since the application deals with user credentials, I have deployed
a docker container with the backend to heroku (https://www.heroku.
com/) and the react app to zeit (https://zeit.co/). This way, the
application got HTTPS without the need of dealing with SSL/TLS
certificates myself.

The application is live on the following url: jhttps://pki-frontend.
now.sh/ and all the source code is available in https://gitlab.com/pkill

III-B Blockchain Data Structures & Functions

Regarding the blockchain, I have three different structures:
BlockChain, Block and Certificate.

class BlockChain {
chain: Array<Block>;
difficulty: number;

The BlockChain has an array of Blocks and a difficulty number.
This difficulty number will tell how much hard will be to had a new
block to the chain (more on this later).

class Block {

timestamp: number;
string;
certificate:
hash: string;
nonce: number;
previousHash:

user:
Object;

string;

Each Block of the Chain has:

« the timestamp with the time of its creation

« an identifier of the user that created it

« an object of the class Certificate (each Block has a Certificate but
the blockchain can be optimized where one block has multiple
certificates like occurs in Bitcoin where one block has multiple
transactions)

o a hash of the block that is calculated using the SHA3 hash
function from cryptojs library (https://github.com/brix/crypto-js)
by joining all attributes of the block:


https://pki-frontend.now.sh/
https://www.typescriptlang.org/
https://www.apollographql.com/
https://www.apollographql.com/
https://expressjs.com/
https://typeorm.io/
https://reactjs.org/
https://reactjs.org/
https://www.apollographql.com/docs/react/get-started/
https://www.apollographql.com/docs/react/get-started/
https://www.heroku.com/
https://www.heroku.com/
https://zeit.co/
https://pki-frontend.now.sh/
https://pki-frontend.now.sh/
https://gitlab.com/pki1
https://github.com/brix/crypto-js

calculateHash () {
return crypto
.SHA3 (

this.previousHash +
String (this.timestamp) +
this.user +
JSON.stringify (this.certificate) +
String(this.nonce)
)
.toString() ;

e a nonce: it is a number that is incremented until the hash has
the difficulty number of zeros in the beginning. For example,
if the difficulty indicated in the BlockChain structure is 2, the
nonce only stops being incremented when the hash of the block
is 700”+rest_of_hash. This logic is achieved with mineBlock
function:

mineBlock (difficulty:
while (
this.hash.substring (0, difficulty) \
!== Array(difficulty + 1).join("0")
) A
this.nonce++;
this.hash = this.calculateHash({();

number) {

o a previousHash: an indication of the hash of the last block in
the chain

class Certificate {
string;
user_identity: string;
algorithm: string;
validity: number;
valid: boolean,
pub_key: string;
issuer_id: string;
string;

version:

usage:
}
The Certificate class is what is stored inside each Block. It contains:

« version: indicates the version of the certificate, can be useful to
later implementations to revoke/change certificates (remember
blockchain is immutable so blocks cannot be changed or re-
moved, a possible solution is to add a new Certificate with a new
version and go through the blockchain to see which Certificate
has the latest version)

« user_identity: which user the certificate belongs to

« algorithm: a string containing the algorithm used to create the
pair of public and private keys. In my implementation I am using
one elliptic curve algorithm ECDH with the curve P256

« validity: contains the date in seconds until the certificate is valid

« valid: boolean that tells whether the Certificate is valid or not
(to use with the logic explained before in version item)

o pub_key: a string containing the public key compressed gener-
ated by the client using ECDH (the private key is stored in the
computer of the user)

 issuer_id: not currently being used in this implementation but
may be used later. Tells who issues the certification

o usage: a string that explains for what this certificate will be used
(for example "VPN”)

There are two more important functions in my implementation of
the blockchain:

o function to add a block to the blockchain

- \
addBlock (newBlock: Block) {
newBlock.previousHash = this \
.getLatestBlock () .hash;
newBlock.mineBlock (this.difficulty);
this.chain.push (newBlock) ;

}

. 7

« function to get all the certificates from the blockchain or only
the ones from a user (if a username is provided)

const getCertificates = \
(blockchain: BlockChain, \
username?: string) => ({

return blockchain.chain
.filter (block =>
username
? block.user === username \
&& !isEmpty (block.certificate)
lisEmpty (block.certificate)

)

.map (({ certificate }) \

=> certificate);

}i

\

All this code regarding this part can be found in the following url:
https://gitlab.com/pkil/pki-server/blob/master/src/blockchain.ts.

HI-C Sign Up & Authentication & Session

To store the users’ password in the database the winner of
password hashing competition was used: Argon2 (https://www.npmjs.
com/package/argon2) [3]. Instead of storing the plain text password
(very bad practice) or using solutions with known vulnerabilities
like berypt [4], I store a hash of that password using the hash
function named Argon2 from the library node-argon2 (https://github.
com/ranisalt/node-argon2).

To create the hash is as simple as:

const hash = await argon2.hash ("password");

To compare the plaintext password to perform login operations we
just need to use verify function from argon2 that return a boolean
where the password provided by the unauthenticated user matches
the hash stored in the database or not.

const IS_VALID = await argon2 /
.verify (hash, "password");

//check if plaintext password

//1s equivalent to hash

Session is an important topic in web applications. It is the set of
data structures that are used to track the state of the user’s interaction
with the application [S]]. To handle session, I used JSON Web Tokens
(JWTs).


https://gitlab.com/pki1/pki-server/blob/master/src/blockchain.ts
https://www.npmjs.com/package/argon2
https://www.npmjs.com/package/argon2
https://github.com/ranisalt/node-argon2
https://github.com/ranisalt/node-argon2

Right after user signs in, it is sent from the server a cookie (this
cookie has the httpOnly flag activated to prevent XSS attacks) that
contains a JWT which includes the users’ username, id and name.
This way, we can identify a request and match it to the user that
sends it.

If a request is sent without the cookie we already know that the
user isn’t logged in and redirect him directly to the login page.
Protected pages, such as Homepage, can only be seen if the user
is authenticated, i.e., sends the request to the server with a valid
JWT token.

Also, there is the case where a request has an invalid JWT (for ex-
ample, a expired JWT) can happen. To prevent this, the jsonwebtoken
library (https://www.npmjs.com/package/jsonwebtoken) has a method
called verify that checks if a JWT is valid or not. When user logs
out, the jwt cookie is cleared.

HI-D Applications Features
In the time of this report, there are three features for the application
after users sign in:

1) Create certificates
2) Search other users certificates
3) See own certificates
1) Create certificates
Users can create their own certificates in the homepage.

Create
Certificates

Using algorithm ECDH to generate keys.

VPN

31/12/2020 12:12

CREATE

In the first field the user needs to write the usage of the certificate,
i.e., for what purpose it will be used. In the other field, is the validity,
i.e., until when the certificate will be valid.

After the user clicks the create button, the pair of public and
private keys are created with the help of the crypto module present
in the browser (window.crypto.subtle). This module supports ECDH
algorithm with the P-256 elliptic curve.

var ecdh = await Crypto.generateKey
({ name: 'ECDH', namedCurve: 'P-256"' },
true, ['deriveBits'])

After this, we have a public and a private key that we can send to
the server and store locally, respectively. With a GraphQL mutation,

the certification information is sent to the server, validated and added
to the blockchain if everything is correct. On the client side, a ”.txt”
file is created with all the certificate information (including the private
key that must stay safe and private).

2) Search other users certificates

Other thing
other users’ certificates to see

Search other people
certificates

test123123123

SEARCH

test123123123 Certificates Q

authenticated users can do 1is to search
if they are real or not.

Version User Algorithm Public Key

1.0 test123123123 ECDH AoN38AO2bnAtZTDq7 Tf2Ixw+kRRIv08i4"

1.0 test123123123 ECDH AhBCUkCpmUfNdRPRbOKUshWSXmagM

S5rows ¥ 1-20f2

After the user types a username and search for a user’s certificates,
another GraphQL mutation is called. The client requests to the server
all the certificates from a certain user in the blockchain (in the server
the function named “getCertificates” explained in the blockchain
section is called). If there are matches, they are displayed back to
the user.

The following code is a example of the mutation that is called in
the server from the client. First checks if the user is authenticated and
only runs if so. If successful, searches the certificates from a certain
username provided by the client in the blockchain and returns an
array of CertificateS.

@Mutation(() => [CertificateS])
@UseMiddleware (isAuthenticated)
searchCertificates(

@Arg ("username") username: string,
@Ctx () { blockchain }: any

) A

const certificates = getCertificates

(blockchain, username) ;
return certificates;

}

All the code regarding GraphQL resolvers can be found in
the following file https://gitlab.com/pkil/pki-server/blob/master/src/
Resolvers.ts.

3) See own certificates

Finally, the users right after he logs in can see his own certificates.


https://www.npmjs.com/package/jsonwebtoken
https://gitlab.com/pki1/pki-server/blob/master/src/Resolvers.ts
https://gitlab.com/pki1/pki-server/blob/master/src/Resolvers.ts

My Certificates Q

Version User Algorithm Public Key Usage Validity

1.0 josef ECDH ALT4STPQGUbIf8XzW8+KHOAQDORbHQsTf06Q3NA/BLIF VPN 1577830920000

5rows v i-10f1

As soon as the page loads, a GraphQL query is made to grab all the
certificates from the username that is logged in. The code is similar
to the search certificates presented before:

@QQuery (() => [CertificateS])
@UseMiddleware (isAuthenticated)
myCertificates (
@Ctx ()
{ payload, blockchain }: any) {
const { username } = payload;
const certificates = getCertificates

(blockchain, username) ;
return certificates;

}

In this one, instead of using the username provided by the user,
the server uses the username stored in the JSON Web Token payload
(the username of the user logged in).

IV Conclusion

To sum up this report, although this application is only a ’proof of
concept”, we can see the potential of blockchain and its application
in Public-Key Infrastructures. With this assignment, I was able to
learn about some new technologies, frameworks and how to create
a simple blockchain using no third-party libraries (only crypto-js to
create the hash for the blocks). I also had the opportunity to increase
my knowledge about Public-key Infrastructures and its components.

References

[1] Anders Wallbom David Sanda Alexander Yakubov, Wazen
M. Shbair and Radu State. A Blockchain-Based PKI Management
Framework. https://www.researchgate.net/publication/323692746_A _
Blockchain-Based_PKI_Management_Framework.

[2] Fernando Boavida and Mario Bernardes. INTRODUCAO A
CRIPTOGRAFIA. https://www.fca.pt/pt/catalogo/informatica/
seguranca-ciberseguranca- protecao-de-dados/introducao-a-criptografia/.

[3] password hashing. Password Hashing Competition. https://
password-hashing.net/.

[4] Snyk. berypt vulnerabilities. https://snyk.i0/vuln/rubygems:bcrypt.

[5] Marcus Pinto Dafydd Stuttard. The Web Application Hacker’s Handbook.
https://portswigger.net/web- security/web-application-hackers-handbook.


https://www.researchgate.net/publication/323692746_A_Blockchain-Based_PKI_Management_Framework
https://www.researchgate.net/publication/323692746_A_Blockchain-Based_PKI_Management_Framework
https://www.fca.pt/pt/catalogo/informatica/seguranca-ciberseguranca-protecao-de-dados/introducao-a-criptografia/
https://www.fca.pt/pt/catalogo/informatica/seguranca-ciberseguranca-protecao-de-dados/introducao-a-criptografia/
https://password-hashing.net/
https://password-hashing.net/
https://snyk.io/vuln/rubygems:bcrypt
https://portswigger.net/web-security/web-application-hackers-handbook

	Introduction
	Fundamentals
	Public-key Infrastructures
	PKI - Important Components
	Blockchain

	Application
	Introduction
	Blockchain Data Structures & Functions
	Sign Up & Authentication & Session
	Applications Features

	Conclusion
	References

