
CRYPTOGRAPHY CASE STUDY #2 - AES Operation

José Donato - 2016225043

I. INTRODUCTION

A. AES Explanation

The Advanced Encryption Standard (AES) algorithm oper-
ates on blocks of 128 bits (16 Bytes) and it can have 128, 192
or 256 bits-length keys. The size of the key will differ on the
number of rounds/stages (it can be 10, 12, 14, respectively).
It uses substitution-permutation network. Each stage operates
on a state matrix 4*4 (block of 128 bits, 16 bytes) and each
column of the matrix is considered a word of 4 bytes. In
every stage, except the last one, there are four operations
in this exact sequence: SubBytes, ShiftRows, MixColumns
and AddRoundKey (explained under). In the last round the
MixColumns operation doesn’t happen. Because every round
needs a key, there is one another operation called Key
Schedule, it produces the keys (called round keys) from the
original provided private key.

B. AES Transformations and Operations

All the following transformations operate on the state
matrix:

1) SubBytes: every byte of the state matrix is exchanged
by another (the first 4 bits show us the line in the S-
BOX and last 4 show the column)

2) ShiftRows: the lines are mixed (the first line isn’t
changed; on the second line, the bytes shift circularly
one position to the left; on the third line, two positions
to the left; and on the last one, three positions)

3) MixColumns: the columns are mixed, which is the
most complex operation

4) AddRoundKey: simple XOR of the resulting text with
the round key

II. COMPUTING TRANSFORMATIONS

1) SubBytes:

TABLE I: Example of a state matrix 4x4

01100100 01010001 10100110 10000010
11010001 11111000 10100101 11000011
01100101 01011000 00001001 00111011
10101010 01010100 10000011 00011101

Looking at our state matrix provided in table I we see
that the first four bits of the first byte are equal to 6
on decimal, so we see on line 6 and last four bytes
are equal to 4 on decimal so we search on column 4.
The correspondent value in the S-BOX table provided
below ([1]) is 4316. Now doing the same for every

TABLE II: State Matrix after SubBytes transformation

43 D1 24 2C
3E 8C 06 2E
4D 6A 01 E2
AC 20 EC A4

cell we will get what we can see on table II.

2) ShiftRows (result in table III):

TABLE III: State Matrix after ShiftRows transformation

43 D1 24 2C
8C 06 2E 3E
01 E2 4D 6A
A4 AC 20 EC

3) MixColumns:
a) The operations must be done according to the

following matrix:
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


Which translates to:

s’00 = 2•s00 ⊕3•s10 ⊕1•s20 ⊕1•s30
s’01 = 2•s01 ⊕3•s11 ⊕1•s21 ⊕1•s31
. . .
s’10 = 1•s00 ⊕2•x10 ⊕3•s20 ⊕1•s30
. . .
s’20 = 1•s00 ⊕1•s10 ⊕2•s20 ⊕3•s30
. . .
s’30 = 3•s00 ⊕1•s10 ⊕1•s20 ⊕2•s30
. . .

b) multiply by 2:
i) first shift 1 bit to the left. Using the first cell

of our state matrix (4316) we got:

4316 equals to 010000112. shift 1 bit:
100001102



ii) most significant bit of the original byte is 0
(010000112) so nothing needs to be done. if
it was 1, the XOR operation of the result of
the last operation with the value 000110112
must be done

2 • s00 = 100001102

c) multiply by 3: results of the multiplication by 2 as
explained above and then XOR with the original
value:

3 • s10 = (2 • s10) ⊕s10

Example for first row and first column (s00):

s’00 = 2 • s00 ⊕3• s10 ⊕1• s20 ⊕1• s30

So we need to calculate 2 • s00 (which we already
have from above, 4316) and 3 • s10 then XOR all
the bytes. s10=(8C)16= (10001100)2

• shift 1 to the left: (00011000)2
• first bit was 1 so:
(00011000)2 ⊕(00011011)2
= (00000011)2
• XOR with s10: (10001111)2 = (8F)16

So:

s’10 = 3 • s10 = (2 • s10) ⊕s10 = (8F )16

d) Now that we have the 2 values we needed to cal-
culate, we just need to XOR the four numbers:

s’00 = 2 • s00 ⊕3• s10 ⊕1• s20 ⊕1• s30
= 100001102 ⊕100011112⊕000000012⊕
101001002
= 000010012 ⊕ 101001012
= 101011002 = (AC)16

This was an example done only for the first cell
of the matrix. To complete this step the 16 cells
of the state matrix must be calculated.

4) AddRoundKey: each column XOR with each word of
the round key (four words and columns in total).
For example, if the first column of the matrix after the
three last transformations is the table IV and the first
word of the round key is the table V:

43
8C
01
A4

TABLE IV: First column of
the state matrix

AC
32
10
23

TABLE V: First word of
the round key

4316 ⊕AC16 = 2F 16
8C16 ⊕ 3216 = BE16
0116 ⊕ 1016 = 1116
A416 ⊕ 2316 = 8116

So, the final column after AddRoundKey
transformation would be the table VI.

Note that, to complete this stage, all columns

TABLE VI: State Matrix’ first column after AddRoundKey

2F
BE
11
81

needed to be XOR with the rest of the words in the
round key. For sake of simplicity only the first was
done.

5) Key Schedule: There is still one more operation in
AES, which is called Key Schedule. The purpose of
this operation is to extend the initial key so that all
rounds can have one key with the same size. In this
step, the initial key is expanded in (N+1, where N
equals to round number) bytes. For AES-128 the 128-
bit key is expanded to 11 round keys, each one with 4
bytes (total 176 bytes). It has N+1 iterations (in AES-
128, 11 iterations).
Steps to complete this operation:

• the first 4 words of four bytes are copied
directly from the key
• then, for the words that are not first in each
iteration: wn = wn-1 ⊕wn-4
• for the first word of each iteration: wn =
g(wn-1) ⊕wn-4

The output of function g can be calculated using the
following steps:

• circular shift one position to the left
• S-BOX [1] operation as in SubBytes
transformation to all the bytes
• XOR operation of the result of the last steps
with a 4-byte word (first byte is a constant and
the last three are zero, the constant depends
of the iteration [2])

I’ll only show the function g operation on one word.
So, if we have, for example, the first word (table VII)
at the first iteration (RC constant will be 01 and all
other bytes of the word 0):



AC
32
10
23

TABLE VII: First word of
key

32
10
23
AC

TABLE VIII: Key after
shift operation

7D
CA
26
DE

TABLE IX: Key after S-
BOX substitution

7C
CA
26
DE

TABLE X: Final key after
XOR with word 01 0 0 0

III. EXPERIMENTAL RESULTS

To make some tests i made a script in python (https:
//repl.it/repls/QuixoticIvoryCopyleft) that
with always the same key will make the encryption for
multiple plaintexts and see how many bits of the output
were different. To calculate this i did the XOR of one first
cyphertext with other and count the number of 1’s in the
result, that way we can know how many bits are different
between those too. For example, the test1 cyphertext has
69 bits different to test0 cyphertext. Note that only 1 bit
changed between test0 and test1 and it produced a difference
of 69 bits between them.

Plaintext Different bits in the output
test0 0
test1 69
test2 70
test3 64
test4 61
test5 65
cn4b2KTYLd 0
ldx1uw9pjq 65
xFmkEGojlmmAE549ptuo 138

As expected and explained before, if we change only one bit
a lot of bits (60 to 70 bits) are changed in the cyphertext,
this is called the avalanche effect. We can also see in the last
three rows that as we increase the number of altered bits of
plaintext (the changes increase each row) and the number of
altered bits of cyphertext also increases more and more.

IV. CONCLUSIONS

We can now take some conclusions. The first one is
that this algorithm achieves what is expected in a strong
encryption algorithm. It produces complete random output
from some input and it guarantees the avalanche effect (small
changes in input lead to big changes in output). Since AES
is based in a substitution-permutation network, it’s important

to see that the bytes are mixed as much as possible. An
interesting property about this is that only after three rounds,
because of the ShiftRows and MixColumns transformations,
every byte of the state matrix depends on all 16 plaintext
bytes [6].

With the increase of cyber-attacks, the need of a good
encryption algorithm increases as well. Special AES instruc-
tions was introduced in Intel CPUs and it is now used widely,
which shows how strong and reliable this algorithm AES is.

REFERENCES

[1] https://captanu.files.wordpress.com/2015/04/aes sbox.jpg
[2] https://en.wikipedia.org/wiki/AES key schedule
[3] https://www.devglan.com/online-tools/aes-encryption-decryption
[4] https://www.rapidtables.com/convert/number/binary-to-hex.html
[5] Fernando Boavida and Mário Bernardes, FCA, Introdução a Crip-

tografia, 2019.
[6] Christof Paar and Jan Pelzl, Springer, Understanding Cryptography,

2010.

https://repl.it/repls/QuixoticIvoryCopyleft
https://repl.it/repls/QuixoticIvoryCopyleft

	INTRODUCTION
	AES Explanation
	AES Transformations and Operations

	Computing Transformations
	Experimental Results
	CONCLUSIONS
	References

