
Security Assessment and Improvement - CSAM Assignment #2

José Donato, donato@student.dei.uc.pt, 2016225043

I Introduction
The report is divided in 4 main parts: Information Gathering, Secu-

rity Assessment, Security Improvement and Security Reassessment.
In the first one I explain how I did the information gathering alongside
with the tools used. Next, in the first security assessment, I assess
the virtual machine without doing any improvement. The part after
(Security Improvement) I explain the security enhancements I did
and finally I finish with a second security assessment and comparing
the latest results with the first assessment results.

II Context
The virtual machine provided has a second-tier web application.

It is a Client Server Architecture. There is a direct communication
between the client and server, i.e., there is no intermediate between
client and server. Because of this, the application is much faster (the
connection and the calls to the database are faster because there is
no intermediate between the two). We have a Client Application
(Client Tier) and a Database (Data Tier). It is easy to maintain
and communication is faster [1]. However, this system is not well
implemented at a security level. In this assignment, I assessed what
was not well implemented, improved it, and assessed it. I finished
with a far more safe machine with the same functionalities (web
server).

A small repository containing the scripts used and the results
of the tools before and after the improvement is available in a
private repository: https://github.com/jose-donato/csam assignment2
(the teacher was added as colaborator).

III Information Gathering
I performed active information gathering, i.e., I was actively

engaging with the target. I took an active part in mapping the virtual
machine infrastructure, enumerating and scanning the open services
for vulnerabilities.

Because active information gathering leaves traces of my presence
in the machine I tried to remove this traces, i.e., remove the
information about my presence in the machine [2].

To perform the gathering in the Virtual Machine directly I used
multiple tools:

1) nmap (https://github.com/nmap/nmap): scan ports from one or
more hosts

2) lynis (https://github.com/CISOfy/lynis): security testing tool
3) LinEnum (https://github.com/rebootuser/LinEnum): check vul-

nerabilities based on a kernel number
4) Linux Exploit Suggester (https://github.com/InteliSecureLabs/

Linux Exploit Suggester): scan for known exploits in the ma-
chine being examinated

5) checksec (https://github.com/slimm609/checksec.sh): script to
check the properties of executable files

6) unix-privesc-check (https://github.com/pentestmonkey/
unix-privesc-check): scan simple privilege escalation vectors

All outputs of the tools referred are redirected to their own file for
further analysis. For example, regarding the nmap scan, the command
has appended in the end ”>./tests/nmap results.txt” to redirect the
output to the file presented.

In order to automate this scanning process, I created a small
bash script (after the improvement I can run the script again with
one command instead of typing all the scanning commands again)
available in the following url (https://github.com/jose-donato/csam
assignment2/blob/master/scanner.sh). This script downloads all the
necessary tools and runs the commands redirecting all the output
in one folder called tests/. Before the script finishes, the files are
removed and ideally history would be cleaned to remove the complete
presence of the gathering. This last step of cleaning wasn’t done (only
deletes the tools downloaded).

IV Security Assessment

IV-A Getting ssh access
Although the password was provided this doesn’t happen in the

real world. If we only know the user of the machine, the ssh port is
open (which is from analysing the results from the previously) and
have no knowledge about the password, we can easily brute force
ssh passwords for a specific user using tools such as medusa (https://
sectools.org/tool/medusa/) or hydra (https://sectools.org/tool/hydra/).
This is viable because users tend to use simple and easy to crack
passwords. In fact, statistics reveal that the most common password
in ssh is ”123456” with 41% of usage[3]. To perform the bruteforce
I chose to use medusa. To run it the following command needs to be
executed:
$ medusa -h 192.168.56.200 -u nuno -P \
10-million-password.txt -M ssh -t 20

The -h is the target host, i.e., the machine we are targeting, -u is
the user, -P is a list of passwords, -M is the mode, in this case we
are using ssh and -t is the concurrent loggin tries we want the tool
to do per second. I used a list of common passwords from SecLists
(https://github.com/danielmiessler/SecLists). After some seconds, the
tool eventually finds the right password (”qwertyui”). It only takes
some seconds because the password is common and doesn’t need
many combinations to get the right one.

After that we can easily login via ssh with the password achieved.

IV-B Gaining root access
Since the machine is not safe, the metasploit software (https:

//www.metasploit.com) can easily scan the machine and provide an
exploit that can be used to gain root access. First I installed the
metasploit in my local machine. After the installation, I ran the
software with the command ”msfconsole”. In the tool, to scan the
vulnerable machine, the following command was used (basically a
nmap to scan the services running in the machine):
$ db_nmap <ip_vulnerable_machine>

The results are the following:

https://github.com/jose-donato/csam_assignment2
https://github.com/nmap/nmap
https://github.com/CISOfy/lynis
https://github.com/rebootuser/LinEnum
https://github.com/InteliSecureLabs/Linux_Exploit_Suggester
https://github.com/InteliSecureLabs/Linux_Exploit_Suggester
https://github.com/slimm609/checksec.sh
https://github.com/pentestmonkey/unix-privesc-check
https://github.com/pentestmonkey/unix-privesc-check
https://github.com/jose-donato/csam_assignment2/blob/master/scanner.sh
https://github.com/jose-donato/csam_assignment2/blob/master/scanner.sh
https://sectools.org/tool/medusa/
https://sectools.org/tool/medusa/
https://sectools.org/tool/hydra/
https://github.com/danielmiessler/SecLists
https://www.metasploit.com
https://www.metasploit.com

As we can see, the machine is running, for example, ftp. So let’s
search in the metasploit for known exploits in this service.
$ search ftp

The exploit ”unix/ftp/protoftpd 133c backdoor” was found. To run
the exploit three commands are needed:

1) Tell the msfconsole that we want to use this specific exploit
$ use unix/ftp/protoftpd_133c_backdoor

2) Set the host we want to exploit
$ set RHOSTS <ip_targeting_machine>

3) Run the exploit
$ run

The exploit is executed and we get a TCP connection with root
access to the vulnerable machine.

After saving the captured flags: enim.doc and expe-
dita.txt with the content of flag{Tarentum juds} and
flag{84f6b787913c7871c2d3f54a54d3e0a1}, respectively, I changed
the root password (changed to ”qwertyui”) to easily access the root
via ssh with the command ”passwd”.

IV-C Attack Surface
The results of the tools explained in the Information Gather-

ing Section and the output of some more commands (explained
below) were used to perform the attack surface measurement. I
adapted the Howard’s Relative Attack Surface [4] adding some
metrics that I found interesting and the result was as follows:

Attack Surface
Avenues of Attack Bias
Open Sockets 1
Open TCP ports 1
Open UDP ports 1
Open RPC endpoints 0.9
Dynamic Web Page 0.1
Services 0.2
Services running 0.8
Accounts 0.7
Accounts with root access 0.9
Vulnerable to bruteforce ssh (medusa) 10
Exploitable ftp (metasploit) 10
Exploits suggested by Linux Exploit Suggester 5
CIS Benchmarks not compliant 1
Some metrics were added and some were changed:
• Dynamic Web Page: the bias’ value was changed from 0.6 to 0.1.

Since this is a modern web application, it is normal to contain
non-html files in the web server root folder.

• Accounts: the users present in the system (including default
mysql user for database, for example)

• Accounts with root access: users with root access (root user
included)

• Vulnerable to bruteforce ssh (medusa): if a tool can bruteforce
the password of a user in fewer than 10 minutes with a normal
computer. Has a high value of bias because it is a severe problem
in case it is true.

• Exploitable ftp (metasploit): if the machine can be exploited
with the ftp exploit showed before. Has a high value of bias
because it is a severe problem in case it is true.

• Exploits suggested by Linux Exploit Suggester: name is self-
explanatory, number of exploits suggested by the tool.

• CIS Benchmarks not compliant: the number of recommendations
that are not compliant in the system.

To get the data to fill the table, I programmed another bash
script (available in the url https://github.com/jose-donato/csam
assignment2/blob/master/attack surface.sh). This script calculates the
required numbers such as open sockets, tcp/udp ports, RPC endpoints,
services, services running, accounts and accounts with root access. It
also tells if the machine hosts a dynamic web page or not.

Another good metric could be the number of security tweaks
”not found” in lynis scan of the system. However, this wasn’t
added because I think there are already enough metrics to compare
the surface attack between the assessments before and after the
improvement.

Attack Surface Measurement
Avenues of Attack Identified

Av. of
Att.

Resulting
Values

Open Sockets 84 84
Open TCP ports 11 11
Open UDP ports 7 7
Open RPC endpoints 60 54
Dynamic Web Page 1 0.1
Services 41 8.2
Services running 23 18.4
Accounts 35 24.5
Accounts with root permissions 2 1.8
Vulnerable to bruteforce ssh (medusa) 1 10
Exploitable ftp (metasploit) 1 10
Exploits suggested by Linux Exploit Suggester 2 10
CIS Benchmarks not compliant 5 5

Adding all the resulting values, we obtain a RASQ value of 244.
This number alone cannot be evaluated. It will be used later to
compare with the value obtained after the security improvements.

V Security Improvement
In order to improve the system security, several changes have been

made.

V-A Updates
Right after I update the easy-to-guess passwords in the system

(”qwertyui”) to something more secure and hard to brute force, I
started with the updates. The system contained outdated services,
applications and the debian version. It is not recommended to have
outdated packages because the majority of them can have known
vulnerabilities that are not fixed since the packages are not updated.
Therefore, I started to update the system.

https://github.com/jose-donato/csam_assignment2/blob/master/attack_surface.sh
https://github.com/jose-donato/csam_assignment2/blob/master/attack_surface.sh

Since the apt sources list was broken and I couldn’t run apt-get
update, all lines of /etc/apt/sources.list were erased and the line ”deb
http://archive.debian.org/debian/ wheezy main contrib non-free” was
added. Another error was found regarding the public keys verification
of apt sources.

$ apt-key adv --keyserver /
keyserver.ubuntu.com /
--recv-keys <key>

After these two changes, I was able to update the system, its
services and its applications with:

$ apt-get update && /
apt-get upgrade && /
apt-get dist-upgrade

V-B Firewall
After the updates have finished, I implemented a simple firewall

called ufw (https://help.ubuntu.com/community/UFW). Since the ma-
chine hosts a web server, there are two ports that are fundamental
to be open: 22/tcp and 80/tcp. The first one is used to connect to
the machine via ssh (important to make changes to the web server
remotely). The second one is the port were the server is listening for
HTTP connections. When a user connects to a browser and goes to
this machine IP address, they connect to the port 80 automatically.
Therefore, this port must be open if we want to access the website.
To apply these rules, two simple commands are needed. First, for
ssh:

$ ufw allow ssh

After, for http connections at port 80:

$ ufw allow 80/tcp

To enable the firewall, we just need to run ”ufw enable”.

V-C Close Services
In my opinion, only essential services should run on the machine

as well as only essential ports should be open (approach used in
the last subsection) for the machine to do its purpose. If there are
more services than the ones needed, we increase the attack surface
unnecessarily.

After analysing the results from the first assessment, we can see
that 84 sockets were open and 23 services were running. These values
are very high, especially for the functionality of this machine.

With the goal of minimizing these numbers, I started closing
services that were useless (after confirming they were useless, of
course).

I started by removing the GUI interface as suggested in the section
6 of CIS Benchmarks (https://www.cisecurity.org/benchmark/debian
linux/). Since this machine only serves a web application we don’t
need a Graphical User Interface for anything and everything we need
can be done via command line. To remove it I just ran:

$ apt-get purge xserver-xorg-core*

The following services were disabled with the help of updaterc.d
command: alsa-utils, exim4, popa3d, rpcbind, samba, saned and
unreal.

I also noticed that nginx was running in a random port. Since
we are using apache on the default 80 port and that is were our web
server is running, I disabled nginx as well. Before I removed it, nginx
contained a lot of open sockets associated which could be a problem
(bigger attack surface).

V-D IDS
IDS is an intrusion detection system. It is essential to spot threats

in the system. Therefore, I installed two types of IDS in the machine:

1) Network Intrusion Detection Prevention System: snort (https://
www.snort.org/). This Network-based IDS monitor the network
for any suspicious activity. Its installation was a bit complicated
but with the help of this tutorial (https://blog.rapid7.com/2017/
01/11/how-to-install-snort-nids-on-ubuntu-linux/) I was able
to fully install and configure this IDS. If this tool is well
configured it is essential because it monitors all the network
requests to the machine and checks for custom rules. For
example, I defined a rule that snort needed to alert me for
every ssh connection that was done to the system by adding
this line to the snort rules file:
$ echo "alert tcp any any /
-> $HOME_NET 22 (msg:'ssh /
connection attempt'; /
sid:1000003; rev:1;)" > /
/etc/snort/rules/local.rules

After this, every ssh connection to the system gives this alert:

2) Data Integrity Tool: tripwire
(urlhttps://www.tripwire.com/solutions/vulnerability-and-
risk-management/intrusion-detection-with-tripwire-register/).
This type of IDS tracks file alterations in the system. While
Network-based Intrusion Detection Systems are important
(snort, for example), Host-based Intrusion Detection Systems
are also essential to have a safe system. With only the
following command, this tool can be download and installed:
$ apt-get install tripwire && /
tripwire --init

Now, several tripwire ”functions” can be executed in the
machien. We can check the system, update the tripwire database
with the new changes, see what the database contains (integrity
of the system, for example). It can also generate reports of its
scans.

V-E CIS Benchmarks fixes
It was in this security improvement that I also fixed what was

not compliant with the CIS benchmarks. All the remediations for
the audits that were not compliant in the system were ran and fixed
besides one: Set Boot Loader Password. I tried to run the remediation
but it eventually broke the machine and need to reinstall everything
in the machine.

V-F DDOS Protection
Finally, some Distributed Denial Of Service protection was added

to the system using IP Tables and some kernel changes. However, if
this was a more serious project, a more effective solution must be
used (cloudfare, for example).

https://help.ubuntu.com/community/UFW
https://www.cisecurity.org/benchmark/debian_linux/
https://www.cisecurity.org/benchmark/debian_linux/
https://www.snort.org/
https://www.snort.org/
https://blog.rapid7.com/2017/01/11/how-to-install-snort-nids-on-ubuntu-linux/
https://blog.rapid7.com/2017/01/11/how-to-install-snort-nids-on-ubuntu-linux/

To implement this, I followed this simple tutorial (https://javapipe.
com/blog/iptables-ddos-protection/) that tells which IP tables config-
urations and kernel changes need to be added to filter ”bad” traffic
on our system.

Although the tutorial suggested to ”Block Packets From Private
Subnets”, I didn’t follow this part because otherwise I would lose
connection to the virtual machine (it is running in the same private
subnet).

VI Security Reassessment
Again, with the help of the script to grab the important

parameters for the attack surface (https://github.com/jose-donato/
csam assignment2/blob/master/attack surface.sh) and the script to
run all the tests (https://github.com/jose-donato/csam assignment2/
blob/master/scanner.sh), I calculated the new attack surface table
after the security improvement:

Attack Surface Measurement
Avenues of Attack Identified

Av. of
Att.

Resulting
Values

Open Sockets 40 40
Open TCP ports 4 4
Open UDP ports 2 2
Open RPC endpoints 0 0
Dynamic Web Page 1 0.1
Services 43 8.6
Services running 18 14.4
Accounts 35 24.5
Accounts with root permissions 2 1.8
Vulnerable to bruteforce ssh (medusa) 0 0
Exploitable ftp (metasploit) 0 0
Exploits suggested by Linux Exploit Suggester 2 10
CIS Benchmarks not compliant 1 1

After disabling a lot of services and implementing a firewall, as
expected, the number of sockets and open ports drastically reduced.
Although the number of services increased by two (snort and
tripwire installations), the number of running services decreased.

Since the kernel was not updated, it is normal to see that the
exploits based on the kernel (suggested by Linux Exploit Suggester)
remain at 2.

Due to the improvements, the system is no longer vulnerable to
bruteforce ssh (at least under 10 minutes) and is not vulnerable to
ftp exploit as we can see in the following image:

Adding all the resulting values we get a RASQ of 106.4. Compar-
ing this value to the one obtained before (244), we can observe that
the value obtained now is not even half of the value obtained before
the improvements. An important conclusion can be drawn. Security
enhancements that I implemented, have ensured much lower attack
exposure (in fact, less than half of the exposure).

VII Conclusion
With this assignment, I was able to perform the information

gathering, security assessment and improvement in a real world
scenario. I gained skills when trying (with success) to gain (root)
access to the machine using several tools unknown to me before.

After gaining access, several scans were made in order to know what
should be improved in the machine. I also learned what I should
improve in a machine at a security level. Also, after this assignment,
I am able to perform important techniques such as calculate the attack
surface of a machine and how I can reduce this surface.

References
[1] Software Testing Class. What is Difference Between Two-Tier

and Three-Tier Architecture? https://www.softwaretestingclass.com/
what-is-difference-between-two-tier-and-three-tier-architecture/.

[2] Dimitar Kostadinov. Penetration Testing: Intelligence Gathering. https://
resources.infosecinstitute.com/penetration-testing-intelligence-gathering/.

[3] securehoney. Live Honeypot Statistics. https://securehoney.net/stats.html.
[4] Jon Pincus Michael Howard and Jeannette M. Wing. Measuring Relative

Attack Surfaces. https://www.researchgate.net/publication/227020448
Measuring Relative Attack Surfaces.

https://javapipe.com/blog/iptables-ddos-protection/
https://javapipe.com/blog/iptables-ddos-protection/
https://github.com/jose-donato/csam_assignment2/blob/master/attack_surface.sh
https://github.com/jose-donato/csam_assignment2/blob/master/attack_surface.sh
https://github.com/jose-donato/csam_assignment2/blob/master/scanner.sh
https://github.com/jose-donato/csam_assignment2/blob/master/scanner.sh
https://www.softwaretestingclass.com/what-is-difference-between-two-tier-and-three-tier-architecture/
https://www.softwaretestingclass.com/what-is-difference-between-two-tier-and-three-tier-architecture/
https://resources.infosecinstitute.com/penetration-testing-intelligence-gathering/
https://resources.infosecinstitute.com/penetration-testing-intelligence-gathering/
https://securehoney.net/stats.html
https://www.researchgate.net/publication/227020448_Measuring_Relative_Attack_Surfaces
https://www.researchgate.net/publication/227020448_Measuring_Relative_Attack_Surfaces

	Introduction
	Context
	Information Gathering
	Security Assessment
	Getting ssh access
	Gaining root access
	Attack Surface

	Security Improvement
	Updates
	Firewall
	Close Services
	IDS
	CIS Benchmarks fixes
	DDOS Protection

	Security Reassessment
	Conclusion
	References

