
Secure Coding and Vulnerability Detection - DDSS Assignment #2

José Donato, donato@student.dei.uc.pt, 2016225043

Abstract—The number of internet users have increased by more than
500% since 2000 and it is a number that doesn’t seems to be stopping
anytime soon. Also, there are more than 3 billion internet users worldwide
[1]. More than ever web applications are being developed and used.
Although the best secure coding practices aren’t being followed and it
results in vulnerable applications with endangerment not only to the
users but also to the owners of the app. To solve this problem the best
practices must be used and developers must be aware of the risks when
coding an application that will be available to every 3 billion internet
users.

I Introduction
The goal of this report is to show the relevance of secure cod-

ing practices and why testing and analysing the app developed is
important. It is divided in two parts.

In the first part, I explain what practices I followed to develop the
secure parts of the application and what vulnerabilities I left open in
the vulnerable parts. I start by explaining each part of the application
in a separate subsection and then I talk about some important features
of the application (like Session and Multifactor authentication). I
finish this section talking about the attacks and their prevention with
ready to use exploits including proof of concept code.

In the second part, the results of testing and analysing tools to
detect vulnerabilities are exposed and discussed.

The application is live on the following url: https:
//ddss-assignment2.herokuapp.com/.

II Part 1 - Secure Coding Practices & Vulnera-
bilities

II-A Introduction
Right after I receive the resources, I converted the NodeJS appli-

cation from JavaScript to TypeScript https://www.typescriptlang.org/.
Although I am not a long experienced TypeScript developer, its
advantages are obvious. It brings optional static type-checking and the
latest ECMAScript features always being compatible with JavaScript,
i.e., JavaScript programs are also valid TypeScript programs. With a
type-safe language we are less likely to make simple errors when
coding.

The application can be accessed live in the url with HTTPS pro-
tection: https://ddss-assignment2.herokuapp.com/ or running docker-
compose up -d in the root folder of the project. All the private source
code is available in the following url: https://github.com/jose-donato/
ddss2019.

When the user enters the application he is presented with 4 different
parts:

• Part 0: One register form where users can create an account
• Part 1: Two login forms (one vulnerable and one secure) where

users can login with their credentials
• Part 2: Chat with two forms (one vulnerable and one secure)

to submit messages and see other users’ messages
• Part 3: Two forms (one vulnerable and one secure) to search

books created in the application

II-B Sign Up & Sign In
As said before, when the users enter the /part0, they can create

an account. This form is safe and is similar to other forms in the
application. It contains three input fields: one for username, one for
email and another for the password.

• is protected against Cross-site request forgery (CSRF) attacks
with the library: https://github.com/expressjs/csurf

• is protected against brute force attacks with the middleware:
https://github.com/AdamPflug/express-brute#readme

• with express-validator (https://express-validator.github.io/docs/)
I do a first input validation. I check if the username is a string
and it has a length between 3 and 31 characters. The same is
done to the password but with a length between 8 and 128
characters. The email is also validated with the same library
(req.body.email.isEmail()).

• before creating queries to the database, I do another validation
of the username and password

• with a parameterized query (from pg library https://github.com/
brianc/node-postgres) I see if the user already exists. If not,
I calculate the hash of the password using argon2id (with the
library argon2 https://github.com/ranisalt/node-argon2) and do
another parameterized query to insert the new user in the table
users

When the users are in the sign up page, they have a suggestion
of a safe password. This password is randomly generated with the
help of the secure-random-password library (https://www.npmjs.com/
package/secure-random-password) that claims to generate passwords
using a cryptographically-secure source of entropy. I found this solu-
tion interesting since afterwards they have a safe password and can
store it on a password manager such as bitwarden (https://bitwarden.
com). Some companies like PortSwigger (https://portswigger.net/) are
already starting to use this approach (provide the safe passwords and
users have to save it in a password manager).

If the users choose not to use this safe password, the password that
they write in the input field will go through an another validation
with the help of the password-validator library (https://github.com/
tarunbatra/password-validator). I set up a schema to check if the
password provided has at least eight characters including:

• uppercase
• lowercase
• number
• symbol
• zero spaces

I decided to use this library despite other solutions such as a
simple regex verification because of Regular Expression Denial Of
Service (ReDoS) attacks. If I used a regex verification to validate the
passwords it could lead to a ReDoS attack.

If all input fields are correct, the account is created, a verification
email is sent ant the users are redirected to the next part: part1.

Before jumping into the sign in page, let’s talk about the verifica-
tion email. It is sent with nodemailer (https://nodemailer.com/about/)
and inside has a confirmation link that has the following format:

https://ddss-assignment2.herokuapp.com/
https://ddss-assignment2.herokuapp.com/
https://www.typescriptlang.org/
https://ddss-assignment2.herokuapp.com/
https://github.com/jose-donato/ddss2019
https://github.com/jose-donato/ddss2019
https://github.com/expressjs/csurf
https://github.com/AdamPflug/express-brute#readme
https://express-validator.github.io/docs/
https://github.com/brianc/node-postgres
https://github.com/brianc/node-postgres
https://github.com/ranisalt/node-argon2
https://www.npmjs.com/package/secure-random-password
https://www.npmjs.com/package/secure-random-password
https://bitwarden.com
https://bitwarden.com
https://portswigger.net/
https://github.com/tarunbatra/password-validator
https://github.com/tarunbatra/password-validator
https://nodemailer.com/about/


https://ddss-assignment2.herokuapp.com
/confirmation/${emailToken}‘

The emailToken is a JSON Web Token (this report have a detailed
section about them below). When the users click the link, their email
is confirmed and they are redirected to the login page (/part1).

In /part1 we have the login forms. To take care
of the authentication part, I followed the pseudocode
suggestion provided in the OWASP cheatsheet [2]:

Algorithm 1: Login Flow

if USER EXISTS(username) then
password hash=HASH(password);
IS VALID=LOOKUP CREDENTIALS IN DB(username,

password hash);
if NOT IS VALID then

RETURN Error(”Invalid Username or Password!”)
else

//If reaches here, successful login, send JWT
end

else
RETURN Error(”Invalid Username or Password!”)

end

Note that both when user doesn’t exist and credentials are wrong it
returns the same message, not providing an attacker any information
about the users in the web application. If an attacker wanted to
know which usernames are registered in application it is impossible
because it will return always ”Invalid Username or Password!” and
not something similar to ”User already taken”.

In the correct (safe) form, I setup a protection against brute force
attacks (with express-brute). This way, if malicious attackers use
automated tools to try different combinations of passwords they will
get blocked from accessing the web application.

On the other hand, the vulnerable form isn’t protected against brute
force. I made a simple script in nodejs to bruteforce this vulnerable
form and get the correct password for a certain user (explained in
later section).

In the safe form, if the user confirmed his email and the credentials
are correct, he is presented with another level of protection: the two
factor authentication (explained in later section).

If the user succeeds to prove his identity gets a token cookie (JSON
Web Token) associated to his requests and is redirected to the next
part: part2. In case the user fails any of this two steps, the attempts
are registered in the system and sent to the user by email.

As I already said, the vulnerable login form isn’t protected against
bruteforce attacks which is a big vulnerability. Also, although it is
not possible to login using simple SQL injections such as ”’ OR
1=1–” the form is not protected against other SQL injections. Since
the query associated with this specific form isn’t parameterized, an
attacker can easily send SQL commands that will be executed in the
database such as: ”’ DROP TABLE users–”. An attacker wouldn’t
know the name of the database tables without more attacks but it
is easy to guess some common table names. In case the attacker
guesses the right table name, the losses would be catastrophic. A
possible mitigation for this problem is suggested in the section II-F.
Changes in Database.

In this vulnerable form, if the user prompts the correct credentials,
gets a token cookie and directly redirects to the next part without
passing the two factor authentication and without the need of having
the email verified.

II-C Part 2 - Insert Message Forms
In this second part of the application, the user is presented with

protected contents, i.e., the user needs to be authenticated to see
this (part2) and the next part (part3). This is achieved using JSON
Web Tokens (JWT). Its implementation is explained in later sections.
Very briefly, if a request has a valid JWT associated, the user is
authenticated. Otherwise he is not and gets redirected to the login
page.

In the /part2, the user is presented again with two forms: one
vulnerable and one correct. In both forms, any logged user can submit
messages and see those messages in the table below the forms. The
differences between the two forms are similar to the ones in the login
forms. The safe one is protected against:

1) SQL injection (SQLi): using pg parameterized queries.
2) Cross-site scripting (XSS): all the messages that

comes from the safe form are escaped before going
into the html with a library named escape-html
(https://github.com/component/escape-html). To achieve
this, I select all the messages from the database and see if the
message come from the safe or vulnerable form. Depending
on the result, the message and the author are escaped or not:

The same effect could be achieved with the EJS library
(https://ejs.co/) when presenting the results in the HTML. If
I used <%= result %>instead of <%- result %>, the result
would be automatically escaped.

3) Cross-site request forgery (CSRF): is an attack where with
some social engineering, the attacker can make a legit au-
thenticated user submit data to a form without noticing it.
To protect against this type of attack I used the csurf library
(https://github.com/expressjs/csurf). It is a middleware that runs
on the routes with forms and generates a valid and unique CSRF
token to insert in the form on the HTML code:

<input type=”hidden” name=” csrf”
value=”<%=csrfToken%>”>

This way, only forms with valid csrfTokens will be executed.

Meanwhile, the vulnerable form is only protected against SQLi with
the parameterized queries. It is vulnerable to both XSS and CSRF
attacks. Later in this report there are sections with examples of this
attacks.

II-D Part 3 - Search Books Forms
In the last part of the application (/part3) we have again two forms:

one vulnerable and one safe. Again, this part is protected, i.e., only

https://github.com/component/escape-html
https://ejs.co/
https://github.com/expressjs/csurf


authenticated users can access it.
The forms allow the users to search for books that exist in the

database. The logic to achieve the features in this forms was complex
and involved SQL queries. Although, lot of parameters in the form
were optional. Because of this, using parameterized queries from ”pg”
for all the parameters was not possible. Since they were optional, I
see if the parameters actually exist and append it to a string that
contains the whole SQL query.

In the safe form, to prevent SQLi attacks, the integer/float param-
eters such as the minimum price, maximum price or days of the
date were converted to numbers with parseInt (or parseFloat in case
of minimum and maximum prices) and the string parameters (title
and authors) were added using ”pg” parameterized queries. Note
that before passing the parameters to the function that makes the
SQL query, all of them go through an input validation with express-
validator library.

Because of the complexity of the logic ”Match with”, it wasn’t
done using SQL queries. From the results after the SQL query, I filter
the data with some recent ECMAscript functions (such as some(),
filter() or map()) to achieve what was intended (all the operations are
in the file /src/utils/operation.ts).

The vulnerable form, although is protected against CSRF attacks,
it has SQL injection vulnerabilities. With simple ”’ OR 1=1–” in
some input fields we can get all the results or do more catastrophic
database operations such as table drops or changes.

II-E Hashing Function - Argon2
To store the users’ password in the database the winner of

password hashing competition was used: Argon2 (https://www.npmjs.
com/package/argon2) [3]. Instead of storing the plain text password
(very bad practice) or using solutions with known vulnerabilities
like bcrypt [4], I store a hash of that password using the hash
function named Argon2 from the library node-argon2 (https://github.
com/ranisalt/node-argon2).

To create the hash is as simple as:

const hash = await argon2.hash(”password”);

To compare the plaintext password to perform login operations we
just need to use verify function from argon2 that return a boolean
where the password provided by the unauthenticated user matches
the hash stored in the databse or not.

const IS VALID = await argon2.verify(hash, ”password”);
//check if plaintext password is equivalent to hash

II-F Changes in Database
The database provided by the teachers suffered some changes. The

first change was remove serial IDs and use UUIDs. Using serial IDs,
i.e., auto incremental integers can be problematic. UUIDs, on the
other hand, provide a solid solution [5].

Password length was also changed password in table users to
match 128 as recommend in OWASP Cheatsheet [2], with the goal
of preventing long password DOS attacks.

A 2FA key (twofa secret) was added to this table when imple-
menting the two factor authentication system.

In order to add email verification and support, the fields email and
confirmed were also added to the table.

Although I did not implement it, to hinder the attacker’s work,
random strings could be added to the table names in order to make
hard to guess them. For example, the table users would be called
”users sositdnnoh6xheinff*whnQpnnjcmkdb”.

II-G Session, Email Verifications & JSON Web
Tokens

Session is an important topic in web applications. It is the set of
data structures that are used to track the state of the user’s interaction
with the application [6]. To handle session, I used JSON Web Tokens
(JWTs).

Right after user signs in, it is sent from the server a cookie (this
cookie has the httpOnly flag activated to prevent XSS attacks) that
contains a JWT which includes the users’ username. This way, we
can identify a request and match it to the user that sends it.

If a request is sent without the cookie we already know that the
user isn’t logged in and redirect him directly to the login page.

Also, the case where a request has an invalid JWT (for example, a
expired JWT) can happen. To prevent this, the jsonwebtoken library
(https://www.npmjs.com/package/jsonwebtoken) has a method called
verify that checks if a JWT is valid or not. When user logs out, the
jwt cookie is cleared. Below there is the middleware that handles
this logic:

There are two possible cases:

• The user is authenticated: if he tries to visit login page, needs to
be redirected to authenticated pages (verifyToken middleware)

• The user isn’t authenticated: if he tries to visit protected pages,
needs to be redirected to login (authLogin middleware)

https://www.npmjs.com/package/argon2
https://www.npmjs.com/package/argon2
https://github.com/ranisalt/node-argon2
https://github.com/ranisalt/node-argon2
https://www.npmjs.com/package/jsonwebtoken


In this application I used the JSON Web Tokens to generate the
confirmation links for email verifications. Since we need a unique
link for a user with a expiration date, this is another great use case
for JWTs.

II-H Multifactor Authentication

Authentication only with the association username/password is
weak since anyone with knowledge of this credentials can access
the account even if they aren’t the owner of the account. That’s why
two factor authentication is essential. In my implementation, after a
user types the username and password and press login button, they
are redirected to another page with a QR Code.

In this page, the user needs to scan the QR Code with an
application that generates 2-step verification codes in their phone
(for example Google Authenticator: https://play.google.com/store/
apps/details?id=com.google.android.apps.authenticator2&hl=en).

After scanning the user receives a 6-digit code that renews every
60 seconds:

To complete the login, the user just needs to type the 6-digit code
in the web application form. If the code is correct, the user will
be redirected to the part2 of the application. This form is protected
against all attacks mentioned so far.

II-I SQL Injection Prevention & Attacks

As said before, the secure forms were protected against SQL
injections using the default protections from the node-postgres library
(parameterized queries). The cases where I couldn’t use parameter-
ized queries were the cases the input was integers. In order to protect
it I converted the input to numbers using parseInt or parseFloat. This
way, malicious inputs would be destroyed.

Although, as you know, there are some vulnerable forms in
the application. In this ones, malicious inputs can result in SQL
injections. ”’ OR 1=1–” and ”’ DROP table users–” are two of the
many examples.

II-J Brute Force Protection & Attacks

Lot of web apps are vulnerable to brute force attacks. In fact, the
part1 vulnerable form in my application is vulnerable to brute force
attacks, i.e., this form hasn’t any protection that limits a user from
making requests.

Below there is a simple script that tests a list of more than five hun-
dred common passwords (only four showed in the image but the file
”bruteforce credentials.js” in the repository contains more than 500):

https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2&hl=en
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2&hl=en


For each password a get request is sent to check if the password,
for example, for the user jose is the correct one or not. Since in this
form there is no brute force protection, this small script will make
over five hundred requests and test all the passwords.

If the password doesn’t match the script passes to the next
password in the list, if it matches the password is logged and the
script exits. Having the password, we can log in the web application
in the vulnerable form like a legit user.

As you can see, this is a big problem. To solve it I used a library
called express-brute (https://www.npmjs.com/package/express-brute)
that limits the requests that an user can make to the server. If an user
is making too much requests their access is forbidden:

”error”: { ”text”: ”Too many requests in this time frame.”,
”nextValidRequestDate”: ”2019-12-26T17:27:51.194Z” }

II-K XSS Protection & Attacks

The solution to solve this type of attack was the easiest one. In fact,
the files provided by the teachers already protected the application
from XSS. In the EJS files, when using <%= variable from server
%>escapes the information that comes from the server and makes it
impossible to perform XSS.

In order to make it more interesting (and vulnerable) I changed
from <%= variable from server %>to <%- variable from server
%>. I already explained in section of Part2 my implementation to
protect the application against XSS in the safe form.

Although, the vulnerable form can be attacked. If we insert
<h1>title </h1>we can see rightaway that it is vulnerable.

Even though, no critical information is saved on cookies without
httpOnly flag activated or in localStorage/sessionStorage. So, no
critical information from the user could be stolen using XSS.

II-L CSRF Protection & Attacks
Again, in part2 I already explained how I protected my application

against CSRF attacks with csurf library. Below we have two forms I
created to perform CSRF attacks (the first one is vulnerable and the
second is not):

Note that the first form will aim at the vulnerable form in
/part2 and the second one will aim the safe form in the same page
of the application. Have in mind also that the vulnerable form isn’t
protected against this type of attacks because we don’t have a csrf
token associated. Therefore, any forms with no csrf token will be
valid. On the other hand, in the safe form, if the form hasn’t a valid
csrf token associated it will result in an error.

If an authenticated user gets tricked into submitting the forms
presented above two cases will happen:

1) the attack will be successful in the first case
and the vulnerable message will be inserted:

https://www.npmjs.com/package/express-brute


2) otherwise, the attack will not be successful and the user will be
redirected to a page with ”INVALID CSRF TOKEN” because
the attack is being executed against a secure form with CSRF
protection.

II-M Sensitive Credentials & dotenv
When coding web applications, storing sensitive credentials in the

source code is considered a very bad practice. In all the application,
whenever a sensible variable was needed (JWT secrets or database
credentials for example) process.env.VARIABLE NAME is used.
This way, all the variables can be stored in a safe place separate
from the rest of the code. In order to accomplish this, I used the
library dotenv (https://github.com/motdotla/dotenv) when developing
the app and then in production I used their heroku config vars.

II-N Deploy & HTTPS
In order to deploy the application and have HTTPS for my

application I used heroku (https://www.heroku.com/). The application
is live in the url http://ddss-assignment2.herokuapp.com/. The source
code of the application is in https://github.com/jose-donato/ddss2019
and to run it locally you just need to execute the following command:
”docker-compose up –build” in the root folder.

III Part2 - Testing and Static Analysis

III-A Web Vulnerability Scanner - Acunetix
To perform blackbox tests, I used a web vulnerability scan-

ner from acunetix (https://www.acunetix.com/vulnerability-scanner/
web-application-security/). To get several results I made three differ-
ent tests:

1) All forms and no bruteforce protections
2) Only safe forms and some bruteforce protections
3) Only safe forms and a lot of bruteforce protections

As expected, in the first one the results gave lot of high, medium
and low vulnerabilities since the project included several vulnerable
forms. The vulnerabilities include, in addition to others, CSRF,
blind SQL injections and XSS. Other minor vulnerabilities were
in the report such as sending credentials in clear text (because the
vulnerable login form is sent in parameters with GET request) or
warning about not having HTTPS (this is solved with the heroku
deploy).

In order to get a better chance on analysing the
results from this tool, I removed the vulnerable forms
from the application. The results were the following:

I got zero high, 6 medium and 5 low vulnerabilities. Almost all
the medium vulnerabilities were ”Cross site scripting (content-
sniffing)”. I tried to find why this vulnerability was report although
without success since the free version of acunetix doesn’t show it
and I wasn’t able to track it when analysing the code. The low
vulnerabilities were regarding to HTTPS and ”Email not found”.
The last one I think it is related to some dependency that I used
because I didn’t found any email on all my code. Also, the ”Login
Page password-guessing attack” shows in the report but I think it is
a false positive because of the protections this form has (brute force
prevention and password validation in sign up).

With the goal of restricting even more the power of this tool, I
put bruteforce prevention on all routes of the application. The results
are presented below:

As you can see, the tool was only able to perform 1730 requests and
only found two very low vulnerabilities. The first one was Content
Security Policy (CSP) not implemented which was later solved by
setting a header in the responses (”res.setHeader(”x-frame-options”,
”deny”);”). The other vulnerability was regarding HTTPS which
was solved with the heroku deploy.

If not limited by some brute-force library, this tool is extremely
powerful and detects a lot of vulnerabilities making it a viable testing
tool when developing safe web applications.

III-B Vulnerability Finder - Snyk

Since the project was done in nodejs environment I used a lot
of open source libraries available in npm (http://npmjs.com/). It
is always important to check if any of the libraries has known
vulnerabilities. To test this, I used snyk (https://snyk.io/). Snyk is a
command line tool to find vulnerabilities in open source dependencies
in a certain project. To use the tool you just need to install it and
then run ”snyk monitor”.

The results are the following:

https://github.com/motdotla/dotenv
https://www.heroku.com/
http://ddss-assignment2.herokuapp.com/
https://github.com/jose-donato/ddss2019
https://www.acunetix.com/vulnerability-scanner/web-application-security/
https://www.acunetix.com/vulnerability-scanner/web-application-security/
http://npmjs.com/
https://snyk.io/


Analysing this, only one known vulnerability (express-brute library)
was found from 271 dependencies in the project. This is the
Common Vulnerability Scoring System of the vulnerability:

Since this is a vulnerability with no known exploit, high complexity
and low impact on Confidentiality, Availability and Integrity I chose
to keep this useful library in the application although, in a bigger or
more complex project I would remove this library right away.

In my opinion, with close to zero effort to setup it (only two
commands: one to install and another to run it) this tool provides
crucial information and its use should be required when developing
web applications.

III-C Static Analysis - SonarQube

To do the static analysis of the code, I used the SonarQube
(https://www.sonarqube.org/) community edition with the typescript
plugin. This tool analysed over 800 lines in my project:

First I got some (around 10) code smells (code that is confused and
difficult to maintain), one bug (coding error that will break the code
and needs to be fixed immediately) and one vulnerability (because
one database credential was being stored in plaintext instead of in
some safe place). An example of a code smell was this:

As you can see, the fixes were easy
and the final report was the following:

https://www.sonarqube.org/


Achieved zero bugs, vulnerabilities and code smells. Although, I
noticed that zero of my code was test covered because I didn’t
perform any type of tests. To solve this issue, I used a framework
called cypress to perform end to end (e2e) testing. I will talk more
about this in next section.

III-D End to End Testing - Cypress
Cypress (https://www.cypress.io/) is a JavaScript End to End

Testing framework. And although it is a framework made to use
with javascript, they support typescript out of the box.

The tests I did are stored inside the folder
nodejs/cypress/integration and are divided into four different
files:

• part0.ts: cover the sign up form in the part0

• part1.ts: cover the vulnerable login form in part1

• part2.ts: cover the vulnerable chat form in part2

• part3.ts: cover the vulnerable search form in part3

Because the lack of time I wasn’t able to test all the code and only
some parts of the vulnerable forms. But this showed the power of
this testing library and how it can be useful to test all different parts
of the application. If changes are made to test covered code, we can
just run the tests again and see if it broke something or everything
is fine.

IV Conclusion
With this assignment I was able to develop a fully functional

application having in mind the best security practices. I also had
the opportunity to position myself in the attacker perspective and try
to exploit my own application (and then protect it).

I learned about different useful technologies, frameworks and
libraries that will be useful in the future when developing web
applications.

References
[1] Zappedia. How Many People Use the Internet? https://zappedia.com/

global-internet-access/.
[2] OWASP. OWASP Cheat Sheet Series. https://cheatsheetseries.owasp.org/

cheatsheets/Authentication Cheat Sheet.html.
[3] password hashing. Password Hashing Competition. https://

password-hashing.net/.
[4] Snyk. bcrypt vulnerabilities. https://snyk.io/vuln/rubygems:bcrypt.
[5] Clément Delafargue. Why Auto Increment Is A Terrible

Idea. https://www.clever-cloud.com/blog/engineering/2015/05/20/
why-auto-increment-is-a-terrible-idea/.

[6] Marcus Pinto Dafydd Stuttard. The Web Application Hacker’s Handbook.
https://portswigger.net/web-security/web-application-hackers-handbook.

https://www.cypress.io/
https://zappedia.com/global-internet-access/
https://zappedia.com/global-internet-access/
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://password-hashing.net/
https://password-hashing.net/
https://snyk.io/vuln/rubygems:bcrypt
https://www.clever-cloud.com/blog/engineering/2015/05/20/why-auto-increment-is-a-terrible-idea/
https://www.clever-cloud.com/blog/engineering/2015/05/20/why-auto-increment-is-a-terrible-idea/
https://portswigger.net/web-security/web-application-hackers-handbook

	Introduction
	Part 1 - Secure Coding Practices & Vulnerabilities
	Introduction
	Sign Up & Sign In
	Part 2 - Insert Message Forms
	Part 3 - Search Books Forms
	Hashing Function - Argon2
	Changes in Database
	Session, Email Verifications & JSON Web Tokens
	Multifactor Authentication
	SQL Injection Prevention & Attacks
	Brute Force Protection & Attacks
	XSS Protection & Attacks
	CSRF Protection & Attacks
	Sensitive Credentials & dotenv
	Deploy & HTTPS

	Part2 - Testing and Static Analysis
	Web Vulnerability Scanner - Acunetix
	Vulnerability Finder - Snyk
	Static Analysis - SonarQube
	End to End Testing - Cypress

	Conclusion
	References

