
Followup Seminars - Report
Benchmarking the performance of recent serverless technologies

José Donato∗, Marco Vieira†
Departamento de Engenharia Informática

Universidade de Coimbra
∗donato@student.dei.uc.pt, †mvieira@dei.uc.pt

Abstract—Web technologies are constantly evolving. Serverless
Computing is an ambitious web technology that has emerged
in recent years and has been the focus of several studies. It
is ambitions because Serverless aims to replace the traditional
architecture where a server is always running waiting for re-
quests. However, its stateless approach and design characteristics
raise some concerns that need to be studied and the primary
one is performance. In this paper we study several technologies
(both serverless and traditional) normally used to support web
applications. We propose a preliminary performance benchmark
that allows comparing recent serverless technologies (such as
Netlify functions, Next.js API routes and Cloudflare Workers)
and traditional technologies (such as Express.js). Results show
that all technologies tested provide high up-time and the server-
less technologies do not fall behind the technologies based on
traditional server architectures.

Index Terms—Serverless Computing,Performance Benchmark

I. INTRODUCTION

Serverless computing (also called Functions as a Service
or FaaS) has been a hot topic for the past few years as it
aims to replace the traditional servers that are the standard
and world-wide used. Serverless proposes an alternative ap-
proach regarding how applications run in the cloud: instead of
constantly running as tradition servers, serverless consists of
stateless functions that run on containers in the cloud and only
wake up on demand, i.e., these containers only turn on when
they are called. Since the containers are by default sleeping
(i.e., not running), serverless functions can be an efficient
alternative in terms of energy consumption (and consequently,
cost). However, if they are by default asleep, before the request
is processed we need to wait until the containers turn on. This
process is called cold boot and it is the primary reason of
serverless performance limitations.

This study focus on assessing the performance of server-
less and non-serverless technologies. Therefore, we propose
a simple performance benchmark that allows comparing
alternative technologies that can be used to develop either
serverless or traditional applications.

We can define benchmark as “standard tools that allow
evaluating and comparing different systems or components
according to specific characteristics (performance, depend-
ability, security, etc)” [1]. For our benchmark we focus on
performance and up-time. Therefore, we choose to perform
several throughput tests, i.e., the number of items processed

per unit time [2]. We are also interested in up-time, i.e., the
percentage of time the system is up [2].

There are several studies that compare different serverless
technologies [3], [4], [5] or the same serverless technology
deployed on different serverless providers [6]. We focus on re-
cent technologies that were not considered yet but are already
gaining popularity. This benchmark currently supports three
different technologies but can be easily extended to support
(as we will see in the Section II). The currently supported
technologies are Next.js API Routes [7], Netlify Functions [8]
and Express.js [9] (we dive deep into the technologies used in
Section II).

We developed the same application using these three dif-
ferent technologies and several scripts to assess them (more
detail in Section II). All the source code is available on
github [10] and the application with the results is live on
benchmarking.vercel.app/sa [11].

As for the results, regarding the tests performed we observed
that the serverless technologies behave similarly to applica-
tions that follow the traditional architecture. All technologies
tested (both serverless and non-serverless) should be viable so-
lutions when the goal is to implement simple web Application
Programming Interfaces (or APIs) with high up-time and that
may involve expensive computations (e.g., image processing).

The remainder of this document is structured as follows.
Section II describes the performance benchmark and explains
all its necessary phases. Section III presents the experiences
made and their results. Section IV we discuss the results and
compare the different technologies under study. Section V
enumerates the limitations of this work and why they exist.
Finally, Section VI concludes the work. In this section we
also consider what could be added to this study in the future.

II. BENCHMARK DESCRIPTION

Our approach is described in Figure 1. Our benchmark
is divided into in three different processes. Therefore, the
remainder of this section is divided into three subsections. In
each subsection we through the processes and the necessary
tools to implement them are explained.

The following list itemizes a brief description about each
benchmark process:

• Application Development (represented with yellow in
the diagram): The first process of the benchmark. This

https://github.com/jose-donato/bench_sless
https://benchmarking.vercel.app/sa

Tests several applications

Results in CSVConfigurations Results in
JSON

Web App to
visualize
results

Analysis
ToolCLI

Application
1

Application
2

Application
n-1

Application
n

OutputsReceives

Application
Development

Produces

Fig. 1: Benchmark Architecture

phase consists of the development of the several applica-
tions that will be tested in the benchmark execution phase.
In its subsection we explained what are the application
features and why we choose those features. Also, we
describe the technologies we choose.

• Benchmark Campaign (represented with orange in the
diagram): Receives the configurations and is responsible
for testing each application while collecting the metrics.
In its subsection we enumerate the configurations, the
metrics we collect and how command-line interface (CLI)
we developed works. The campaign outputs the results in
comma-separated values (CSV).

• Result Analysis and Presentation (represented with
green in the diagram): This is the final process of our
assessment. To sort the results from the Benchmark Cam-
paign we developed a simple analysis tool that receives
the results in CSV format, performs some analysis and
converts them into JavaScript Object Notation (JSON).
Finally, we can provide the JSON files to the web
application we also implemented in order to display the
results.

A. Application Development

The focus of our assessment is performance. Therefore, we
tried to collect a set of features that despite being simple
allowed to evaluate the performance (primarily the throughput)
of serverless and non-serverless functions. This resulted in two
features:

• Dominant Color Endpoint: An endpoint that receives
a JPEG or PNG image and retrieves its dominant color,
i.e., the color that appears more times in the image. We
think this use case is representative because it involves
expensive computations. The bigger the image, the more
computations are needed. In code snippet 1 is presented
the code we used to calculate the dominant color. The
snippet navigates through all the images pixels (repre-
sented by matrix) and calculates the color that appears
more times.

Listing 1: Compute image dominant color. Adapted from this
source code.

function dominantColor(w, h, matrix) {
const size = w * h
const rgb = [0, 0, 0]
let idx
for (let y = 0; y < h; y++) {

for (let x = 0; x < w; x++) {
idx = (w * y + x) << 2
rgb[0] += matrix[idx]
rgb[1] += matrix[idx + 1]
rgb[2] += matrix[idx + 2]

}
}
return [Math.floor(rgb[0] / size), Math.floor(

rgb[1] / size), Math.floor(rgb[2] / size)]
}

As we will see in Benchmark Campaign II-B, for more
expensive workloads we submit bigger images. For the
opposite effect, we use smaller images. This endpoint
expects POST requests with the image in the body and is
normally located at /dominantColor. Alongside the
dominant pixel, this endpoint returns the duration it took
to compute the pixel (which will be useful in Subsections
II-B and II-C for collecting the metrics).
For our tests, we consider three different sizes for of the
same JPEG image:

– One small image: 640x959 pixels.
– One medium image: 1920x2878 pixels.
– One large image: 2400x3598 pixels.

• Echo Endpoint: Simple endpoint that does not receive
anything and just returns a “Hello World” string. This
endpoint expects GET requests and is normally located
at /echo and its purpose is to assess the throughtput of
each application.

As said in the introduction, we developed several applica-
tions and they are all open sourced in the github [10].

Each application has its own folder and a Dockerfile as-
sociated (i.e., a file that contains the information needed to
build a Docker image [12]) to ease the process of running
each application. We considered the following technologies to
develop the applications under test:

• Serverless - recent technologies that are used to support
web applications such as:

– Next.JS API routes: “API routes provide a straight-
forward solution to build your API with Next.js” [7].

– Netlify functions: “Serverless functions built into
every Netlify account. No setup, servers, or ops
required” [8].

– Cloudflare Workers: “Simple FaaS on the edge of
Cloudflare CDN” [13]. Cloudflare workers was not
included in tests because this technology is not
compatible with docker and when running locally
it crashed as soon as the tests started.

• Traditional - also recent technologies to support web
applications:

– Express.js: “Node.js web application
framework” [9].

As we will talk in Section V, the deployment of such
technologies is hard without paying some money. Therefore,
we deployed the production builds of each application using
docker to a server that we own (its specifications are enumer-
ated below). The commands listed in Snippet 2 were used to

https://github.com/xtuc/img-color-worker
https://github.com/xtuc/img-color-worker
https://github.com/jose-donato/bench_sless/tree/main/applications

limit the amount of RAM (to 1GB) and CPU (to 1 CPU, i.e.,
if the machine has 4 CPUs, each application will have access
to atmost 1 CPU) each application can have. These conditions
were an attempt to simulate the amount of RAM and CPU
they would have when deployed to Cloud Providers such as
Vercel, Netlify or Heroku.

Listing 2: Docker commands to start applications
$ docker run -d -p 3003:3003 --memory="1g" --cpus="1

" sa-express
$ docker run -d -p 8888:8888 --memory="1g" --cpus="1

" sa-netlify
$ docker run -d -p 3001:3001 --memory="1g" --cpus="1

" sa-next

Docker is running in a machine inside a HP DL360e Server.
The machine contains 8GB ram and N cores of Intel Xeon E5-
2450L and the operating system is Lubuntu 20.04.

B. Benchmark Campaign

The Benchmark Campaign is structured as the diagram 2.
The crucial part of this phase is the tool that we develop to

CLI - automate
the submission of
images and just

test the
serverless
function

Provides
configuration
(minutes,

parallelism, images,
endpoints)

M
A
C
H
I
N
E

Process
1

Process
2

Process
n-1

Process
n

a) configu
ration

b) go
through
endpoints

b1) go
through
images

Endpoint 1 Endpoint ... Endpoint n

Image 1 Image ... Image n Image 1 Image .. Image n Image 1 Image ... Image n

b2) for each image we send
requests during X minutes
from Y different processes

X minutes

M
A
C
H
I
N
E

Process
1

Process
2

Process
n-1

Process
n

X minutes

c) write the results to csv

Endpoint
1

CLI

Process
1

Process
2

Process
n-1

Process
n

Application

Configurations
Receives Spawns

Results in CSV
Each process sends images and echo requests

Outputs

Fig. 2: Benchmark Campaign

automate the submission of requests (to both endpoints re-
ferred in last subsection) of each application. The tool receives
a set of configurations, spawns N processes (depending on
the configurations) that are responsible for sending requests
to each application. While the requests are being sent and
received, the metrics are being collected and in the final, the
tool outputs all the results in a CSV formatted file.

This tool is a command-line interface (CLI) developed with
Python. Initially, the tool was developed in JavaScript but turn
out to be an enormous mistake because Node.JS (engine to run
JavaScript applications outside the browser) is single-threaded.
Therefore, it was impossible to implement true parallelism in
our tests, i.e., to perform several requests at the exact same
time. This is one of the benchmark requirements because we
need to perform requests to the same application to evaluate
its scalability capabilities.

Before running the tool, the applications must be running
and we need to provide their endpoints in this configuration
file.

The tool receives a set of configurations that we can see in
Figure 3.

• Duration: the duration in minutes the tool will be
performing requests for each application (and for each

Fig. 3: CLI Configurations

image). If we choose 10 minutes, the tool will send
requests during 10 minutes for each selected image for
each selected application (10 times the number of images
per application). As for the echo endpoint, the duration
the tool will be sending requests will be a third of this
value (10/3 minutes per application).

• Parallelism value: it is the number of requests the tool
will be sending at the same time (illustrated in figure 2).
The range presented in Figure 3 (1 and 16) is calculated
by querying the number of logical processors of the
machine in which the tool is running. This was possible
using the multiprocessing python package. With this, we
were able to achieve parallelism. If we choose 2, for
example, during the duration configured above, the tool
will be sending requests from two different processors.

• Endpoints: the applications that the tool will be testing.
The values that appear here are provided in a configura-
tion file that lists the applications and their two endpoints
3.

Listing 3: Endpoints configuration file available in content.py
endpoints = {

"next_sless": {
"url": "http://

SERVER_IP_RUNNING_APPLICATIONS:3001/
api/dominantColor",

"echo": "http://
SERVER_IP_RUNNING_APPLICATIONS:3001/
api/echo"

},
"netlify": {

"url": "http://
SERVER_IP_RUNNING_APPLICATIONS
:8888/.netlify/functions/
dominantColor",

"echo": "http://
SERVER_IP_RUNNING_APPLICATIONS
:8888/.netlify/functions/echo"

},
"express": {

"url": "http://
SERVER_IP_RUNNING_APPLICATIONS:3003/
api/dominantColor",

"echo": "http://
SERVER_IP_RUNNING_APPLICATIONS:3003/
echo"

}
}

From all the endpoints, we can choose which applications

https://vercel.com/
https://netlify.com/
https://heroku.com/
https://github.com/jose-donato/bench_sless/blob/main/scripts/lib/content.py
https://github.com/jose-donato/bench_sless/blob/main/scripts/lib/content.py
https://docs.python.org/3/library/multiprocessing.html
https://github.com/jose-donato/bench_sless/blob/main/scripts/lib/content.py

the tool will test (normally, all of them).
• Images: contains all the images available to send to each

application. The images are located in the repository
inside the folder assets/. As said previously, there are
three different images and for the tests we choose all
three. Depending on how many images we choose, the
tool will send each one to each application during the
duration we specified in the first configuration.

After the configurations are provided, the images se-
lected are loaded and the tests start. A estimated

Fig. 4: Benchmark Campaign in progress

finish time is calculated (currenttime + duration ∗
numberofimages ∗ numberofapplications + (duration ∗
numberofapplications)/3). Snippet 4 calculates when the
benchmark is expected to end.

Listing 4: Estimated time of benchmark finish. Source code
from bench.py file
now = datetime.now()
total_duration = duration*len(endpointsKeys)*len(

images) + (duration*len(endpointsKeys) / 3)
estimated = now + timedelta(minutes=total_duration)
print("Benchmark expected to end at " + estimated.

strftime("%Y%m%dT%H%M%S"))

During the benchmark execution, two set different metrics
are collected:

• Echo Function Duration: the time in milliseconds that
takes for the request to leave our tool, reach /echo
endpoint and to receive back the ”Hello String”. It is
important to note that his value can be heavily influenced
by the network latency. To get the time the function
perf counter() from python time module was used. Since
this function returns a clock with the highest available
resolution is ideal to measure this short duration.

Listing 5: Echo Function Duration. Snippet from bench.py file
start = perf_counter()
res = requests.get(endpointUrl) #echo endpoint

end = perf_counter()
#end - start * 1000 = duration in milliseconds

• Image Function Duration: the time in milliseconds that
each application takes to calculate the dominant color.
As explained in Subsection II-A, the endpoint returns
this value. Contrary to the previous metric, the network
latency does not matter here because the computation
is done during the function execution at the applica-
tion side. Since the applications we developed were
using JavaScript, we used the function performance.now()
from perf hooks Node.js module which is similar to
perf counter() from python.

Listing 6: Image Function Duration. Source code from Express
Application.

const { performance } = require("perf_hooks")
....
app.post(’/api/dominantColor’, async (req, res)

=> {
const start = performance.now()
const [data, base64] = req.body.content.

split(’,’)
if (data === ’data:image/jpeg;base64’) {
const rawImageData = jpeg.decode(

base64ToArrayBuffer(base64))
const mean = meanRgba(rawImageData.width,

rawImageData.height, rawImageData.data).
toString();

const end = performance.now()
const duration = end - start
return res.status(200).send(‘${mean};${

duration};jpeg;${rawImageData.width}x${
rawImageData.height}‘)

}
....

}
....

As we can see in Snippet 6, the usage of perfor-
mance.now() is similar to perf counter.now() in python.
The only difference is that the JavaScript version returns
the high resolution timestamp in milliseconds instead of
seconds. Therefore, we do not need to multiply this value
by 1000.

We believe that although they are simple, these two met-
rics allows us to compare the different applications (and
furthermore serverless against non-serverless) in terms of
performance.

Finally, the tool writes all the outputs to a CSV formatted
file that will be analyzed in the following Subsection.

C. Result Analysis and Presentation

This last phase is related to the output of the Benchmark
Campaign. The snippet 7 is the example content that one of
the output files can have.

Listing 7: Example of results’ output file. All CSV outputs
can be found on results/ folder.
next_sless,echo,268.9282999999705,success
...
next_sless,image

,3325.2480999981344,2591.9733029976487,jpeg,1920
x2878,success

https://github.com/jose-donato/bench_sless/tree/main/scripts/assets
https://github.com/jose-donato/bench_sless/blob/main/scripts/lib/bench.py
https://docs.python.org/3/library/time.html#time.perf_counter
https://github.com/jose-donato/bench_sless/blob/main/scripts/lib/bench.py
https://nodejs.org/api/perf_hooks.html#perf_hooks_performance_now
https://github.com/jose-donato/bench_sless/blob/main/applications/express/index.js
https://github.com/jose-donato/bench_sless/blob/main/applications/express/index.js
https://github.com/jose-donato/bench_sless/tree/main/scripts/results

...
next_sless,image

,498.69630000102916,347.68583200126886,jpeg,640
x959,success

...
netlify,echo,49.6642999969481,success
...
express,image,3694.3297000034363,2863.7091179937124,

jpeg,1920x2878,success
...
express,image,49232.63100000005,-,-,-,failure
...

The rows presented are all valid rows that can appear in these
files. First column identifies the application, second column
identifies whether it is related to the echo test or image test:

• If is related to echo test: third column is the metric Echo
Function Duration (in milliseconds) and last column tells
whether the test was successful or not.

• Otherwise, is related to image test: third column indicates
the duration from the request left our assessment tool
until the response was received (this value will not be
used for our tests), forth column indicates the metric
Image Function Duration (in milliseconds), fifth column
indicates the image type and sixth column the image
dimensions.

Finally, any test can fail the last column of both tests tell
whether it was successful or not (last row of Snippet 7 is an
example of an image test that failed).

The results’ countless lines do not mean much alone.
Computations and data processing are needed to transform
the several numbers in something noticeable. Therefore, we
made another Tool (called Analysis Tool in diagram 1) and the
source code can be find analysis.py. This tool was also written
in python3 and uses pandas, a python data analysis library. Our
analysis tool receives all the results in CSV and calculates the
average time and total number of successful requests for each
type of test. The average time is calculated by dividing the
sum of all metric values (of course it depends whether it is a
echo test or image test) by the number of requests.

Listing 8: Hypothetical result to explain how Average Time is
calculated
next_sless,echo,100,success
next_sless,echo,120,success
next_sless,echo,110,success
express,image,3000,1000,jpeg,1920x2878,success
express,image,3200,1200,jpeg,1920x2878,success

Let’s imagine the list 8 represented one CSV result of our
tests. For the echo test, next sless application would have an
average time of (100+120+110)/3 = 110 millisseconds and
a total of 3 requests. For the 1920x2878 (large) image, express
application would have an average time of (1000+1200)/2 =
1100 millisseconds and a total of 2 requests.

This average value that we can conclude from our metrics
is important because given two applications A and B, if A
has a lower average time than B for the same test it means
that application A processed more requests than application B
in the same period of time (i.e., application A had a higher
throughput than application B). Therefore, we can conclude

already that the lower the average the better the application
performed in a certain test.

Analysis Tool output is a JSON file that contains an array
with the size of number of applications tested (for example,
if we tested three applications, the array would have three
elements). Each position in the array is an object that contains
the information of certain application (an example of such
object can be seen in Listing 9). Inside the object, there are
three keys:

• application: identifies the application
• echo: information related to the echo test (i.e., total

number of successful requests and the mean value)
• image: array with each image tested. In each position

there is an object with information related to that image
test (i.e., image size, total number of successful requests
and the mean value).

Listing 9: Example object inside results JSON array. All the
JSON outputs can be found on results json/ folder.
{

"application": "next_sless",
"echo": {

"total": 8473,
"mean": 51.03107600614179

},
"image": [

{
"size": "640x959",
"total": 3330,
"mean": 308.17142929579256,

},
{

"size": "1920x2878",
"total": 492,
"mean": 2630.7996119227473,

},
{

"size": "2400x3598",
"total": 320,
"mean": 4637.17616056874,

}
]

}

After processing all the CSV results to JSON results with
the Analysis Tool we can proceed to the final step of our
benchmark which is providing them to the Web Application
to easily visualize them and finally compare the different
technologies.

This web application was developed using Next.js and
Recharts. The source code can be found on webapp folder and
the application is live on benchmarking-web.vercel.app/sa.

III. EXPERIMENTS & OVERALL RESULTS

We performed the tests with different set of configurations.
The differences in configurations between each run are listed

https://github.com/jose-donato/bench_sless/blob/main/scripts/analysis.py
https://pandas.pydata.org/
https://github.com/jose-donato/bench_sless/tree/main/scripts/results_json
https://nextjs.org/
https://recharts.org/en-US/
https://github.com/jose-donato/bench_sless/tree/main/webapp
https://google.com

TABLE I: Set of benchmark runs

Experience
ID

Configuration

- Duration
(min)

Parallelism

e-1-1 1 1
e-5-1 5 1
e-10-1 10 1
e-20-1 20 1
e-30-1 30 1
e-30-2 30 2
e-30-4 30 4
e-30-8 30 8
e-30-16 30 16

in Table I (we varied the value of parallelism and duration).
We started with a duration of 1 minute and increased until
we reached 30 minutes always with the value of parallelism.
Then, we fixed the duration at 30 minutes and started varying
the parallelism value (from 1 to 16, in base powers of 2 i.e.,
1, 2, 4, 8 and 16).

At first, we were testing with the CLI tool and the applica-
tions running in the same machine. We came to the conclusion
that this approach was not representative and the results would
not be interesting. Moreover, the tests were realized with the
client machine running the CLI positioned 200 kilometers
away from the server running the applications (server specs
were presented back in Section II).

Figures 5, 6, 7, 8 are simple line charts from our web
application and each chart contain the results of our several
runs. In the X Axis we can see the matching experience ids
from table I and in Y Axis the Average Time in millisseconds.
It is important to note the lower the value the better a
certain application behaves (this is true for any of our tests).
These charts show how the different applications behave when
increasing the duration and/or the parallelism value.

Fig. 5: Line chart for Echo test

Table II presents a summary of all runs. It contains the
average value of each test in all runs for each application.

All the charts and tables are also available in our web ap-

Fig. 6: Line chart for Small image test

Fig. 7: Line chart for Medium image test

plication benchmarking.vercel.app/sa. We strongly recommend
its visualization for a more interactive analysis.

IV. RESULTS DISCUSSION

In all tests we did not have a single failure, i.e., all the
requests returned the expected output without timing out.
Thus, the charts and table presented in the last Section only
contain successful requests.

This is the first conclusion that we came across. All three
technologies are robust enough to perform expensive com-
putations for image processing (regarding the image test) or
for serving simple APIs (regarding echo test) even when the
number of simultaneous requests were increased (by increas-
ing the parallelism value). Therefore, any service where high
availability is a main requirement both supported serverless
applications (i.e., Next.js API routes and Netlify functions)
traditional application (i.e., Express) can be used.

The four different tests presented similar results. Since the
applications had similar average values we conclude that their
performance is similar. This may have happened due to several
reasons:

TABLE II: Results of all Runs
Application
ID

Tests Averages (ms)

- Echo Small Image Medium Im-
age

Large Image

express 54.6083 274.6407 2878.2962 4522.5559
next sless 53.4500 309.3885 2648.0012 4617.0934
netlify 54.4844 289.5480 2822.5176 4847.6377

https://benchmarking.vercel.app/sa

Fig. 8: Line chart for Large image test

• All the applications are being served with exact same
conditions.

• The applications are all node.js based. In future work VI,
we propose to add more applications which are not
related to node.js (for example, applications developed
with python)

• We only increased the parallelism to a maximum value
of 16 which means that at most there are 16 simultaneous
requests to each application. This value may be too low
to start damaging the applications’ performance.

By analysing the charts, the non-serverless technology (i.e.,
express application) was more consistent overall through all
the tests than its competitors. However, looking at table II, we
can also conclude that in some situations serverless technolo-
gies had better results. For example, in Echo test next sless
application outperformed the other two and in Medium image
test both serverless technologies outperformed the traditional
technology. Again, the possible reasons for this to happen were
enumerated in the previous list.

According to these results, we can draw some conclusions.
When developing Next.js web applications and there is a
need for simple API endpoints (which can involve image
processing), there is this good possibility of using Next.js API
Routes instead of spinning up another Node.js instance with
express for this purpose only. The same can be applied to
use netlify functions for that purpose also. Since the results
are so similar, in this situations may not be worth to have an
additional Express API. In the other hand, we conclude that
Express provides more stable and slightly better results for
this purpose. Therefore, it can be a viable solution in case
we can afford to have a node.js server in addition to our web
application.

Regarding Cloudflare Workers, it is an interesting tech-
nology and the deployment to its Cloudflare platform was
flawless. However, we hope to see more improvements when
self-hosting it and official support for docker, for example.

Of course these conclusions are only valid for the conditions
and environments similar to what we had in our study (e.g.,
running the applications using docker with similar hardware,
processing similar image sizes, etc.).

V. WORK LIMITATIONS

Since serverless is all about the cloud, during this study
we faced several obstacles and had to look for alternatives to
achieve minimally representative results. First, our applications
were all being served directly from cloud providers. We had
Next.js API Routes deployed in Vercel (which is the com-
pany behind Next.js), Netlify functions deployed in Netlify,
Cloudflare Workers in Workers service and Express deployed
in Heroku. However, this had several problems:

• Different cloud providers give the applications different
hardware, making really hard to assess all the applications
in a fair way.

• Because we are assessing the throughput of the applica-
tions, the CLI we developed send a lot of requests. Also,
we were using the cloud providers’ free plans which made
it impossible to do some kind of testing because we ended
up exceeding the plans’ limits.

Afterwards, as we explained before, the applications under
test ran in a server that we control using docker. Since we do
not replicate all the mechanisms of the dedicated serverless
cloud providers, our approach may not be fair because the
serverless applications do not fall asleep (and consequently,
there is no cold boot). We assume that we do not take into
account this feature of serverless and is a limitation of our
assessment and plan in Future work VI to add mechanisms to
simulate the such features. In the other hand, this way we were
able limit all applications to the same conditions and provide
a fair comparison between at least the serverless applications.

We also acknowledge that the tests we have chosen are
stateless (e.g., subsequent requests are never dependent on
previous ones) which is favorable for serverless technologies.
In the future work VI, we also propose to add more tests
should be added that take into account some state in order
to have a more complete comparison between serverless and
traditional applications.

Finally, some results may be a little bit off because the client
machine running CLI tool is my work machine. Therefore, at
some moments I needed to work at the same time the tests
were running and it can result in some minor fluctuations.
However, this should have close to zero impact.

VI. CONCLUSIONS & FUTURE WORK

Despite the difficulties we faced, in this study we designed
and implemented a performance benchmark between server-
less and traditional technologies that are normally used to sup-
port web applications. We have shown that all technologies can
provide high availability. Also, the tests performed showed that
the serverless technologies do not fall behind the traditional
tested application even outperformed it in some tests.

Therefore, we conclude that serverless applications can
be a viable alternative in situations where the requirements
are stateless, high up-time and may involve some image
processing or simple API calls.

All serverless technologies studied are still at an early
stage and should be monitored because they will continue to

https://vercel.com
https://netlify.com/
https://workers.cloudflare.com/
https://heroku.com/

improve. Although Cloudflare Workers failed to integrate our
tests it has a great potential since the serverless functions when
deployed to Cloudflare Platform will be distributed through its
CDN which has servers all around the world.

There are several aspects that can be improved in our work.
As potential future work, we have the following suggestions:

• Our tests does not take into account operations that
involve some kind of state and this favors serverless
technologies over traditional ones. Moreover, more tests
can be added to our benchmark.

• All the technologies tested performed similarly. By intro-
ducing more applications, namely applications that do not
use JavaScript, in the benchmark we can assess whether
all the applications being produced with JavaScript was
the reason for this. Also, by adding more we would
increase the representativeness of the benchmark and,
consequently, assess more technologies.

• Improve the architecture where applications run (e.g.,
support cold boots when applications are inactive) in
order to similar to how it works when deploying to
serverless cloud providers. This can be done by using
Kubernetes [14] or Docker Swarm [15], for example.

REFERENCES

[1] M. Vieira, H. Madeira, K. Sachs, and S. Kounev, “Resilience
Benchmarking,” in Resilience Assessment and Evaluation of Computing
Systems, K. Wolter, A. Avritzer, M. Vieira, and A. van Moorsel, Eds.
Berlin, Heidelberg: Springer, 2012, pp. 283–301. [Online]. Available:
https://doi.org/10.1007/978-3-642-29032-9 14

[2] P. Killelea, Web Performance Tuning: speeding up the web. ” O’Reilly
Media, Inc.”, 2002.

[3] R. Chard, T. J. Skluzacek, Z. Li, Y. Babuji, A. Woodard,
B. Blaiszik, S. Tuecke, I. Foster, and K. Chard, “Serverless
Supercomputing: High Performance Function as a Service for Science,”
arXiv:1908.04907 [cs], Aug. 2019, arXiv: 1908.04907. [Online].
Available: http://arxiv.org/abs/1908.04907

[4] D. Jackson and G. Clynch, “An Investigation of the Impact of Language
Runtime on the Performance and Cost of Serverless Functions,” in 2018
IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion). Zurich: IEEE, Dec. 2018, pp. 154–160.
[Online]. Available: https://ieeexplore.ieee.org/document/8605773/

[5] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,
“Serverless Computing: An Investigation of Factors Influencing Mi-
croservice Performance,” in 2018 IEEE International Conference on
Cloud Engineering (IC2E), Apr. 2018, pp. 159–169.

[6] G. McGrath and P. R. Brenner, “Serverless Computing: Design, Imple-
mentation, and Performance,” in 2017 IEEE 37th International Con-
ference on Distributed Computing Systems Workshops (ICDCSW), Jun.
2017, pp. 405–410, iSSN: 2332-5666.

[7] “API Routes: Introduction | Next.js.” [Online]. Available: https:
//nextjs.org/docs/api-routes/introduction

[8] “Netlify Functions | Netlify.” [Online]. Available: https://www.netlify.
com/products/functions/

[9] “Express - Node.js web application framework.” [Online]. Available:
https://expressjs.com/

[10] J. Donato, “jose-donato/bench sless.” [Online]. Available: https:
//github.com/jose-donato/bench sless

[11] ——, “https://benchmarking.vercel.app/sa.” [Online]. Available: https:
//benchmarking.vercel.app/sa

[12] Docker, “Dockerfile reference | Docker Documentation,” Jan. 2021.
[Online]. Available: https://docs.docker.com/engine/reference/builder/

[13] “Cloudflare Workers®.” [Online]. Available: https://workers.cloudflare.
com/

[14] “Kubernetes.” [Online]. Available: https://kubernetes.io/
[15] “Docker Engine swarm mode overview.” [Online]. Available: https:

//docs.docker.com/engine/swarm/

https://doi.org/10.1007/978-3-642-29032-9_14
http://arxiv.org/abs/1908.04907
https://ieeexplore.ieee.org/document/8605773/
https://nextjs.org/docs/api-routes/introduction
https://nextjs.org/docs/api-routes/introduction
https://www.netlify.com/products/functions/
https://www.netlify.com/products/functions/
https://expressjs.com/
https://github.com/jose-donato/bench_sless
https://github.com/jose-donato/bench_sless
https://benchmarking.vercel.app/sa
https://benchmarking.vercel.app/sa
https://docs.docker.com/engine/reference/builder/
https://workers.cloudflare.com/
https://workers.cloudflare.com/
https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/

	Introduction
	Benchmark Description
	Application Development
	Benchmark Campaign
	Result Analysis and Presentation

	Experiments & Overall Results
	Results Discussion
	Work Limitations
	Conclusions & Future Work
	References

