Container Evaluation -

HPSI Assignment #2

José Donato, donato@student.dei.uc.pt, 2016225043

Abstract—Virtual Machines are defined as ’software
computers”. They can run on top of two types of hy-
pervisors. Type 1 is the most common in production
environments, where a dedicated operating system (ESXi,
for example) is installed on top of a physical machine
normally called ”bare metal”. The second type (type
2) operates on top of a common operating system (for
example Ubuntu or Windows) and occurs when a user
installs a tool like VMware Player or VirtualBox. This last
type is more limited because this softwares normally run
on a non-dedicated machine for the purpose (against the
type one that uses a dedicated physical machine). On the
other hand, when talking about microservices, containers
can be really useful since they abstract even more of the
system than Virtual Machines and have far less overhead.
Containers’ goal is to package an application and all the
underlying dependencies together. This container package
can be run anywhere where a container engine is installed
(can run on top of a type 1 or type 2 virtual machine
if it has a container engine installed) [1]. This report
aims to provide a comparison between these two types of
virtualization (containers and virtual machines) in terms
of performance.

Index Terms—VMware, VMware ESXi, Virtual Ma-
chine, Container, Docker, Linux Containers, Benchmark-
ing, Comparison, CentOS, Dockerfile, Hypervisor, Virtu-
alization

I. INTRODUCTION

This report is divided into two parts. First I start
by explaining the state of art on Container evolution
and current developments as well as its orchestration.
Next, in a more practical way, I do a series of tests to
compare both Virtual Machines and Containers always
explaining what I will evaluate (I/O performance in terms
of networking, mass storage access, memory and CPU
overhead).

II. CONTAINER EVOLUTION

A. Introduction

As said in the abstract, Virtual Machines are only
possible on machines with hypervisors (the software
between host OS and Virtual Machine operating system).

App 1

App 3

App 1

App 3

Bins/Lib Bins/Lib Bins/Lib Bins/Lib

Container Engine

Guest OS Guest OS

Operating System

Hypervisor

Infrastructure

O &

Infrastructure

0 &

Virtual Machines Containers

So, people arrived to a conclusion. The next logical
step to take in virtualization was to get a quick way to
create a isolated area environments on top of a operating
system. That is why Containers appeared [2]].

Containers can provide virtualization at both applica-
tion and system level and has some of the following
features:

« complete OS environment sandboxed (or isolated)

« packaging of applications with isolation

« portable and lightweight environment that can run
anywhere

« maximize resource utilization in data centers

e since it is fast to build a container, we can easily
have multiple development environments (test, pro-
duction, etc)

The containers can bundle isolated applications and their
dependencies that can run anywhere. We have many
other advantages when using containers:

« they are lightweight compared to virtual machines.
This means that more containers can run per host
machine.

o starting a container is almost instant

o it grants us the capacity to fully utilize the comput-
ing resources

Before linux kernel officially introduced the possibility
to create containers natively or docker was a reality lot of
work and research had to be done. In the next subsection,
a timeline is made from the roots of the containerization
to the current times [3]].

B. Timeline
Container Evolution Timeline
Year Technology OS supported
1982 Chroot Unix-like
2000 | Jails FreeBSD
2000 Virtuozzo Linux/Windows
2001 Linux VServer Linux/Windows
2004 | Solaris Container Sun Solaris/Open
Solaris
2005 | OpenVZ Linux
2006 Process Containers | Linux
2008 LXC Linux
2011 Warden Linux
2013 LMCTFY Linux
2013 Docker Linux/MacOS/Windows
2016 | Security in Con- | -
tainers
2017 Kubernetes Linux
T =t
Fe‘g(BS:;o‘wM i Concoptatmapshots - acanssinconaners e Contaiers go
2013
=3 A SOL'“*“ Google redifat % docker
Em {) v =3
T SRt S -

requires recompilation and namespaces

In the following subsection, I explain the most important
technologies that got us to the point where we are now
with containers [4]].

C. Explanation

1)

2)

3)

Chroot: filesystem isolation by switching root
directory for a process and their children to another
new location in the filesystem.

FreeBSD Jails: provides the ability to partition
the operating system environment, maintaining the
simplicity of the UNIX root” model. The requests
are limited to the jail, allowing sys admin to
delegate management capabilities for each virtual
machine environment. With FreeBSD jails we can
create multiple native virtual environments and it
is based on the creation of a different directory,
hostname and a network address for the specific
virtual machine (can be accessed via ssh on this ad-
dress), i.e., we can partition a FreeBSD computer
into several independent smaller systems (jails)
each one with an IP address. The jails provide a
separation between services.

Linux VServer: similar to freeBSD jails. Partition
resources (file systems, network addresses and

4)

5)

6)

7)

memory) on a computer. This type of virtualization
could be achieved by patching linux kernel.
Solaris Containers: is the combination of system
resource controls and has isolation provided by
zones (completed isolation virtual servers on one
host machine). Zones have a low overhead on CPU
and memory (this grants some advantages over
virtual machines on some cases). They can cap the
resource pool or the compute capacity to a certain
limit.

Open VZ: uses a patched linux kernel (like Linux
VServer) with capabilities of virtualization, isola-
tion, resource management and checkpointing (not
officially provided from linux kernel).

Process Containers: in 2006, Google designed
process containers with the goal of limiting, ac-
counting and isolating resource usage (cpu, mem-
ory, disk i/o, network) of a collection of pro-
cesses. They were after renamed to control groups
(cgroups) and merged with linux kernel (this is
one of the features that made Ixc possible, talked
below).

LXC (LinuX Container): most complete imple-
mentation of linux container manager. Works on
a linux kernel without the need of patches. Key
features were added to the linux kernel making
possible container virtualization as we see in the
first versions of tools such as docker. Manage
to provide a contained/isolated area in the host
machine. This isolated area is similar to virtual
machine but with containers we don’t need a hy-
pervisor. The three key features enabled containers
were:

« Control Groups: solution presented by google
to a problem: a running process when request
for resources that are unavailable gets deleted
by system. With control groups, resources can
be controlled and accounted for based on.
Process groups aggregate tasks and their future
children into hierarchical groups.

« Namespaces: abstraction to a global system
resource that appear to the processes. Used
to implement containers. Provide the isolation
between container and host system.

o Filesystem: disk image, provides the root
filesystem for the container. Set of files
mounted at root on any linux-based machine.
Note that the container shares the same kernel
as host machine. The size can be reduce by

8)

9)

10)

11)

12)

simply contain the application and share the
filesystem with the host machine. Using Copy
On Write (COW), only the pointers are saved
and only one disk image can be shared be-
tween multiple containers (allowing reduced
sizes).

Warden: uses LXC and can isolate environments
on any OS with a daemon and an API for container
management running. Include the features of LXC
(cgroups, namespaces and the process life cycle).
It can manage a collection of containers across
multiple hosts.

Let Me Contain That For You (LMCTFY):
open-source version of Google container stack.
It provided linux application containers. Ended
after google contributing the core of LMCTFY to
libcontainer (used in docker).

Docker: this tool made containers popularity ex-
plode exponentially. Similar to warden, in the
beginning, Docker used LXC and replaced it later
with their own library libcontainer. They offered
an entire ecosystem for containers easy to manage.
This tool provides a tool that makes easy to interact
with linux containers and is being championed
by many as the new standard in cloud software
management [2].

Security: in 2016, with the high adoption of con-
tainers, vulnerabilities also expanded. This led to
an increase importance of security in containers.
The goal was to build secure containers from the
beginning.

Kubernetes: in 2017, open-source project from
google appeared called kubernetes. First project
that received a donation from Cloud Native Com-
puting Foundation (CNCF) and is now supported
by them. It is a container orchestrator and allows
complex containerized applications [3] to scale
easily. We can call this tool the vSphere (or ESXi)
of the containers’ world. It allows companies to
easily manage the containers and, consequently,
their applications (comparing to virtual machines,
vSphere or ESXi manage the Virtual Machines
needed in a data center).

Kubernetes & Docker work
together to build & run
containerized applications

2N

SR RN
o /)N
L4 ‘ L
e . @ [oo J| o
iox e \Z ‘ v [|\
rop ¥ ‘
i k= Virtual Machine | Virtual Machine
e N N N ‘
Operating System Operating System oY @ o)
Traditional Virtualized Container Kubernetes
Deploy Deploy Deploy Deployment

This figure explains well the difference between a
traditional deployment, a virtualized deployment, con-
tainer deployment and a kubernetes deployment [6].
Traditional deployments were used when there were no
virtualized environments, then with virtualized data cen-
ters the virtualized deployments appeared with different
virtual machines on a physical server (VMware ESXi or
vSphere for example). With the birth and stabilization of
containers, the process of developing and deploying ap-
plications turn out much easier but when that application
gains high usage and popularity, it becomes a problem.
That is where Container Orchestration tools such as
Kubernetes comes to rescue. Kubernetes makes the pro-
cess of deploying and scaling up complex containerized
applications easy, managing multiple containers for you.

In the beginning of containers, people always thought
Containers and Virtual Machines were rivals. Now, peo-
ple think the same about docker and kubernetes. There
are situations that ones are better and another situations
that they are not recommended, in the majority of the
times they are not competing against each other and
can be used simultaneosly. Kubernetes can use docker
containers in the same way we can use containers inside
virtual machines.

III. BENCHMARKINGS
A. Introduction

In this second section of the report, a series of bench-
marking to measure the performance between Virtual
Machines and Containers was done.

B. Tools

To measure container-level indicators the tool pro-
vided by docker: docker stats (https://docs.docker.com/
engine/reference/commandline/stats/) was used (to mea-
sure CPU and Memory). Also, the VMware ESXi mon-
itor was used to measure the machine that runs the
container (for disk and network I/O). To measure the

https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/

virtual machine without the container only the VMware
ESXi interface statistics was used.

C. Test Environment

All the tests were performed on the server running
VMware ESXi 6.7 provided in the course. For consis-
tency, the container and virtual machines will be using
the same operating system, CentOS (virtual machines
use CentOS 8 and container CentOS 7 because the
version 8 wasn’t stable).

Two machines were used:
Machines to perform the tests
Name | OS CPU | Memory Disk | Linux
in (num- | (GB) (GB) | Con-
ESXi ber) tain-
ers
jdonato| Cent 2 4 40 No
OS 8
jdonatot Cent 2 4 40 Yes
client | OS 8
As we can see in the previous table, both machines

are provisioned with exactly the same resources. The
following image shows the resources each machine has
in VMware ESXi (only one image because they are
both the same):

~ Hardware Configuration

» [cpPU 2 vCPUs
Wl Memory 4GB

» 2 Hard disk 1 40 GB
USB controller USB 2.0

» M Network adapter 1 VM Network (Connected)

» 8 Network adapter 2 testjdonato (Connected)
» EH Network adapter 3 FRONTEND (Connected)
» (M Video card 4 MB

4 CD/DVD drive 1 ISO [local_DS] 1ISO/CentOS-8-x86_64-1905

-boot.iso) Select disc image

» [Others Additional Hardware

The only difference between the two machines is
that one has linux containers running (with the help of
docker) and the other doesn’t. Both performed the same
operations and ran the same tools in order to compare
them. Because they have not been updated since their
creation, I started by updating them:

$ sudo yum update

After the machines have updated, I installed
docker-ce in jdonato-client machine following
this tutorial: https://linoxide.com/linux-how-to/
how-to-install-docker-on-centos// and created a

Dockerfile with CentOS image. The Dockerfile is
simple and can be seen below:

our base image

FROM centos:7

run updates

install wget to get necessary
tools

clean the packages

RUN yum -y update && \

yum -y install wget && \

yum clean all

The docker image can be built by running:
$ docker build —--network host -t centOS
And can be later started with:
—-—network host to get access to internet
from the host,
network as host
docker run -it --network host centOS
When we build the docker image with this dockerfile,
we can see start the comparisons. The virtual machines
are currently with around 5GB occupied. The linux
container with a Cent OS image is fewer than 300MB:
RE ™ AG

ORY

i.e., container in the same

Ur H H H

We begin to see clearly the differences between the
two systems by highlighting how lightweight containers
can be relative to a virtual machine. When comparing
these two values (300MB and 5GB), we can see that we
could have around 16 containers with this size (300MB)
and still wouldn’t be the same size (16*0.3=4.8GB) as a
virtual machine with almost no software installed besides
the CentOS operating system (5GB).

After the container is running, we have access to a
bash shell of the container with the latest 7 version of
Cent OS (i tried running the version 8 to match with
the Virtual Machine OS but, as I said before, due to
some instability of Cent OS docker images it was not
possible). With the shell we can run commands just like
in the terminal of the virtual machine with CentOS.

Since docker have great tools to gather statistics from
the containers running I used this tools (docker-stats) to
perform the tests. If I run the following command from
the host machine running docker:
$ docker stats <container_id>

I get the following

NAME
sill

output:

https://linoxide.com/linux-how-to/how-to-install-docker-on-centos/
https://linoxide.com/linux-how-to/how-to-install-docker-on-centos/

As we can see, it provides some important statistics
about the container: CPU, memory usage, Disk and
Network I/O, etc. To save this statistics to a file for
further analysis, I used the following command:

S while true; do docker stats \
—--no-stream \

>> stats_docker.txt; done

This way, until i stop the command (with control+c
or similar), the output of docker stats will be appended
to stats_docker.txt”.

Additionally, network and disk I/O statistics were
gathered directly from the VMware ESXi since the
container is directly connected to the host network and
the disk I/O from docker stats was not accurate.

The same tests that were run on the container were
run also on the virtual machine without the container,
after all it is the purpose of this assignment, to compare
both situations. To measure the indicators in the virtual
machine, as I said before, I used the VMware monitor
tool inside ESXi. Like the docker stats, it also reports
indicators good enough for this kind of comparison.

D. Tests Performed

The list below enumerates the tests that were per-
formed on both the container and the virtual machine:

1) Download of a big file (2.6GB) to compare
CPU/Memory/Disk/Network usage

2) Run ’stress” (https://www.cyberciti.biz/faq/
stress-test-linux-unix-server-with-stress-ng/) to
generate workload for Unix systems, it can impose
a configurable amount of CPU, memory, I/O and
disk stress on the system. To install it is as simple
as running in both container and virtual machine
the following command:

$ sudo yum install stress

In the following subsections, both tests will be ex-
plained and the results exposed.

E. Downloading File

In this first test, a file with 2.6 GB was downloaded
with the command:

$ wget https://cdimage.kali.org/ \
kali-2019.4/kali-1inux-2019.4 \
—amdé4.1iso
When downloading a
compare CPU, Memory,
usage in both systems (container and virtual
machine). All the results are in the following
spreadsheet https://docs.google.com/spreadsheets/d/

big file, we can
Network and Disk I/O

1zeIbgFRCnKQQv1VKIAVhzKcfZFbAHGjya8sLDk5vID7U/

edit?usp=sharing.

The following images and tables are the results for the
downloading file test. For each type of usage, I present
two images containing the utilization in both container
and virtual machine and a table that contains the average,
minimum and maximum values of each one.

1. CPU

CPU utilization % in Container

15

CPU %

Time (s)

CPU utilization % in VM

40

CPU %

Iterations

CPU (%) Container vs Virtual Machine
/ Container VM
AVG | 8,68 13,43
MIN |0 0,35
MAX | 14,91 31,12

2. Memory

https://www.cyberciti.biz/faq/stress-test-linux-unix-server-with-stress-ng/
https://www.cyberciti.biz/faq/stress-test-linux-unix-server-with-stress-ng/
https://docs.google.com/spreadsheets/d/1zeIbgFRCnKQQv1VKIAVhzKcfZFbAHGjya8sLDk5vD7U/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1zeIbgFRCnKQQv1VKIAVhzKcfZFbAHGjya8sLDk5vD7U/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1zeIbgFRCnKQQv1VKIAVhzKcfZFbAHGjya8sLDk5vD7U/edit?usp=sharing

Memory utilization % in Container
03

02

MEM %

01

Time (s)

Memory utilization % in VM
1

075
0,5
025

0

60

MEM %

Iterations

Memory (%) Container vs Virtual Machine
/ Container VM
AVG | 0,177 0
MIN | 0,05 0
MAX | 0,26 0
3. Disk 10
DISK 10 MB/s in Container
50
40
§ 30
§ 20
) 10
0
1 2 3 4 5 6

Iterations

DISK 10 MB/s in VM

60

40

20

Disk Usage (MB/s)

~
o
o

Iterations

DISK 10 (MB/s) Container vs Virtual Machine
/ Container VM
AVG 19,60 22,26
MIN 0,01 0
MAX | 47,88 52,29
4. Network 10
NETWORK |0 mbps in Container
400
_ 300
g
ag, 200
2 100
0
1 2 4 5 6 7
Iterations
NETWORK 10 mbps in VM
500
400
‘g 300
g 200
= 100
0
1 2 4 5 6

Iterations

NETWORK IO (mbps) Container vs Virtual Machine
/ Container VM

AVG 157,21 183,33

MIN |0 0

MAX | 386,28 4237

F. Stress Test

After the first, another test was performed. In this one,
I tried to do a stress test using the unix tool named
”stress” to measure CPU, Memory and Disk 10.

The command used to perform the tests was:

$ stress —-—cpu 8 ——-io 4 —-vm 2 \
—-—-vm-bytes 128M —--hdd 4 —--timeout 60s

Below there are the results from this test:
1. CPU

CPU utilization % in Container
100

75

50

CPU %

25

Iteration

CPU utilization % in VM

100

75

Memory utilization % in Container
8

MEM %
IS

S 10 15 20 25

Iteration

Memory utilization % in VM
1

0,75
05

0,25

50

CPU %

25

CPU (%) Container vs Virtual Machine
/ Container VM
AVG | 54,23 51,61
MIN | 0,68 0,45
MAX | 100 100

2. Memory

:Ei 0
=
1 2 3 4 5 6
Iteration
Memory (%) Container vs Virtual Machine
/ Container VM
AVG 4,80 0
MIN 0,51 0
MAX | 7,17 0
3. Disk 10
DISK 10 MB/s in Container
200
150
g S0
0
1 2 3 4 5 6

Iteration

DISK |0 MB/s in Container

150

100

Disk Usage (MB/s)

Iteration

DISK IO (MB/s) Container vs Virtual Machine
/ Container VM
AVG | 81,09 58,83
MIN 0 0
MAX | 152,05 136,5

IV. DISCUSSION

After analyzing the results I obtained some conclu-
sions.

From a CPU level, we can observe that a full vir-
tual machine has far more overhead than a lightweight
container. Therefore, the CPU utilization in Virtual Ma-
chines are far higher (can be clearly seen in the first
test).

Regarding memory usage, I couldn’t come up with
good conclusions. In both tests, the container consumed
very little memory (at max 5 %). Although, I couldn’t
compare it to Virtual Machine since VMware ESXi
Monitor always showed 0% on memory usage in all tests.

Disk IO results were interesting. Although in the first
test Virtual Machine had slightly better results (around
2.5MB/s higher), in the second one the container sur-
passed the virtual machine, with an average of more
23 MB/s and peaked over 152.05 MB/s while virtual
machine only reached 136.5 MB/s. Since the containers
introduce no overhead, the performance of disk writes
are even better than in a virtual machine. Therefore,
when a developer is choosing his virtual environment,
if his applications require a high disk usage, containers
should be considered as the main option [7].

Finally, as expected, the virtual machine won the
network “battle”. Since the container was using the host
network (i.e., the same network as the virtual machine),
it was expected to have the same or lower network IO.

To sum up, in my opinion, the results are similar
in both VM and container. From a performance level,
container gains some points for being lightweight but

loses another to Virtual Machines that are more robust
and powerful in other situations.

V. CONCLUSION

A brief performance comparison between Linux Con-
tainers and Virtual Machines was done in this report. As
expected, we have seen that Linux Containers are far
more lightweight than Virtual Machines (the last ones
introduce more overhead than the containers). Because
of this they have their advantages. On the other hand,
there are situations where Virtual Machines are more
recommended.

Therefore, in my opinion, they are not direct oppo-
nents as they can often be used together. There are times
when it is most recommended to use virtual machines,
sometimes when it is advisable to use containers and
even situations where they can be used simultaneously.
It is up to the developer or system administrator to decide
what is best for the situation.

REFERENCES

[1] David Zomaya. Container vs. Hypervisor: What’s the Dif-
ference? |https://www.cbtnuggets.com/blog/certifications/cloud/
container-v-hypervisor- whats- the-differencel

[2] Alex Loxham. Docker and Containerisation:
An introduction. https://fember.co.uk/articles/
docker-and-containerisation-an-introduction,

[3] Senthil Kumaran S. Practical LXC and LXD. |https://www.
springer.com/gp/book/9781484230237,

[4] Rani Osnat. A Brief History of Containers:
From the 1970s to 2017. https://blog.aquasec.com/
a-brief-history-of-containers-from- 1970s-chroot- to-docker-2016.

[5] Ann Mary Joy. Performance comparison between Linux contain-
ers and virtual machines. |https://ieeexplore.ieee.org/document/
7164727,

[6] Jim Armstrong. Docker and Kubernetes? I Thought
You Were Competitors! https://www.docker.com/blog/
top-questions-docker-kubernetes-competitors- or-together/.

[7]1 Ridip De Anish Grover Sumit Maheshwari, Saurabh Deochake.
Comparative Study of Virtual Machines and Containers for
DevOps Developers. |https://www.researchgate.net/publication/
327237114_Comparative_Study_of_Virtual_Machines_and_
Containers_for_DevOps_Developers.

https://www.cbtnuggets.com/blog/certifications/cloud/container-v-hypervisor-whats-the-difference
https://www.cbtnuggets.com/blog/certifications/cloud/container-v-hypervisor-whats-the-difference
https://ember.co.uk/articles/docker-and-containerisation-an-introduction
https://ember.co.uk/articles/docker-and-containerisation-an-introduction
https://www.springer.com/gp/book/9781484230237
https://www.springer.com/gp/book/9781484230237
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://ieeexplore.ieee.org/document/7164727
https://ieeexplore.ieee.org/document/7164727
https://www.docker.com/blog/top-questions-docker-kubernetes-competitors-or-together/
https://www.docker.com/blog/top-questions-docker-kubernetes-competitors-or-together/
https://www.researchgate.net/publication/327237114_Comparative_Study_of_Virtual_Machines_and_Containers_for_DevOps_Developers
https://www.researchgate.net/publication/327237114_Comparative_Study_of_Virtual_Machines_and_Containers_for_DevOps_Developers
https://www.researchgate.net/publication/327237114_Comparative_Study_of_Virtual_Machines_and_Containers_for_DevOps_Developers

	Introduction
	Container Evolution
	Introduction
	Timeline
	Explanation

	Benchmarkings
	Introduction
	Tools
	Test Environment
	Tests Performed
	Downloading File
	Stress Test

	Discussion
	Conclusion
	References

