Survey on software quality and dependability

Concepts, terminology and software fault tolerance techniques

Jodo Almeida*, José Donato’
Departamento de Engenharia Informética
Universidade de Coimbra
*jlalmeida@student.dei.uc.pt, Tdonato@student.dei.uc.pt

Abstract—Software quality attributes are essential but
commonly overlooked, leading to projects being riddled
with faults (bugs). This paper aims to give a brief exposi-
tion of the encompassing concepts and techniques, and be a
valuable resource for those wanting to get up to speed with
them. Striving for a compromise between completeness and
conciseness, references for each topic are provided to allow
further exploration at the reader’s discretion.

Index Terms—Software Quality, Security, Dependability,
Fault tolerance

I. INTRODUCTION

Software is inconceivably ingrained into our society.
We depend on it for an enormous range of purposes:
from automating the more menial day-to-day tasks to
managing life-critical systems.

Sadly, too often we are only concerned with delivering
the required functionality, disregarding essential quality
attributes due to time/money/knowledge constraints.

And sure, performance is usually a big focus, but
only because it directly leads to increased profits (less
computing power needed), and likewise for usability
(more attractive to customers).

The big problem is regarding attributes like (most
notably) security, where we don’t have such a direct
incentive to ensure it, and as such it’s where most
corners are cut [15]. Only when the inevitable incident
occurs (with potentially devastating consequences), do
we realize our mistake actually happened when we first
started the project, since such quality attributes aren’t
really implementable as an afterthought - they must be
considered since its inception (by design).

With this in mind we present a condensed but com-
plete view of software quality concepts, with particular
focus on security/dependability issues and associated
techniques. The goal is thus to provide an adequate intro-
duction into the regularly overlooked facets of software
quality.

The paper will be structured starting with the very
broad concept of ‘Software Quality’ and its related ter-
minology: its attributes and requirements, among others
(Sec.). We then follow Fig. [I]'s hierarchy of concepts
(shown in a bigger scale in the appendix - Fig. [2)): ,
beginning with security (Sec. [ITI), progressing upwards
into dependability (Sec. and finally resilience (Sec.
[V). Section will be dedicated to faults and the
approaches available to handle them, while Section
will conclude the paper.

Further readings will be provided through the paper
hoping to aid the reader in selectively deepening their
knowledge.

Integrity Security

Availability Reliability Resilience

Safety

Fig. 1. Concept Hierarchy (adapted from [1])

II. SOFTWARE QUALITY

Providing adequate definitions for simple terms like
‘software quality’, is deceptively hard [[L1]. Even IEEE
standardized glossary’s [7] definition seems quite lack-
luster:

“The degree to which a system, compo-
nent, or process meets specified requirements.”
We’ll then choose to formulate our own definition,
based on [1]] and [7]:

Software Quality: The degree to which the
software satisfies requirements regarding how
its functionalities are achieved and assured.

A. Software Views

We typically look at software from two distinct points
of view [1]]:
o Functional View: what it does. Related to the
software’s functionalities.
o Non-functional View: how it is done. For example,
If the system is fast or reliable at providing a certain

functionality - related to its quality.

B. Quality Requirements

The software’s requirements consist of a set of
statements specifying the user’s needs. These may be
subdivided according to each software view:

« Functional: are directly related to the functionalities,
i.e., what the system should provide to the users

o Non-functional: constraints/goals on how how the
system should provide those functionalities to the
users, ie. quality requirements.

An example of a non-functional (quality) requirement
could be that a certain functionality is only available
to specific users, and as such requires their previous
authentication.

C. Quality Attributes

A software attribute is a characteristic affecting its
quality [7]], [8].

There are numerous such attributes, many of which
we will discuss in the next sections since they are related
with our paper’s main focus - security and dependability:

o Confidentiality:
Integrity:
Availability: (where scalability is also discussed)
Reliability:
« Maintainability:
Safety:
 Robustness:
There are however many other quality attributes, most
notably:

o Performance: related to the software’s speed, par-
ticularly how it handles its workload.

o Usability: related to the user’s ease of interaction
with the software, ie. whether acceptable perfor-
mance can be achieved for each task ([[17]). It can be
decomposed into many sub-attributes (learnability,
efficiency,...[1]), for which guidelines are available
([16]] is a good example).

e Cost: can be time and/or money. Even though this
may seem quite out of place next to the other
attributes we have enumerated, cost is in fact the

biggest constraint to quality. The bigger the amount
of resources we invest into the software [1], the
more (quality) requirements we can afford to satisfy.

We might then question how these attributes can be
measured? It certainly looks a necessity for assessing the
quality of the software.

Well, in some cases, such (quality) metrics may be
straightforward to identify. For example, with perfor-
mance we may only care about the throughput (work
per time unit [1]), easily benchmarkable - where we
define a common workload to be executed by different
(versions) of the system, and for which the results will
serve as comparison.

But how do we measure usability? We could test in on
many people, but there would still be representativeness
concerns... And likewise security is notoriously hard to
measure [[14]], since a single vulnerability may be the
cause of great harm done to a system and/or its stake-
holders'| and we can never be sure of their absence.

D. Quality Factors

Quality attributes can be organized hierarchically, with
those in higher levels being called quality factors [8].

Our paper is structured following this concept, fo-
cusing on increasingly encompassing quality factors:
security, dependability, resilience (as shown in Fig. [2).

E. By Design

Whereas functionalities can be generally added in
an ad hoc manner, quality requirements require careful
planning for their accommodation.

This planning must start from its inception (by de-
sign), since that is when we have the most flexibility
to change its architecture/functional requirements. The
further along we wait in the development life cycle,
the bigger the cost that will ensue. Studies have shown
that reworking represents 40%-50% of a project’s efforts
[LLS]].

Security is a glaring example of this. It must be a
consideration when implementing each functionality, im-
posing considerable constraints on its working (require-
ments), and how we structure the different components
making up our software (architecture).

SQUARE [18] is a methodology to develop system
requirements with security in mind, but many similar
exist (cf. [20]]).

1anyone benefitting from it [[13]

III. SOFTWARE SECURITY

To develop secure systems the confidentiality, integrity
and availability of information system resources must
be preserved [3]. According to NIST standard FIPS
199, these three attributes are the security goals for
information systems [4].

In addition to those, there are also other important
attributes that we must think about when developing
secure systems: accountability and authentication. The
former is related to mechanisms to link actions to their
actors and the latter refers to mechanisms to make sure
that an individual is who he claims to be.

We need to understand that we can never guarantee
perfect security. However, the use of methodologies such
as Security by Design and in-depth Security (several
overlapping layers of defense mechanisms) will help us
implement securer systems.

Sometimes it is hard for a system to combine all
security attributes due to the fact that they can collide
with one another. [26] is a good reference that studies
exactly this, with one example being availability (Sec.
vs. confidentiality (Sec. [[IT-A).

In the following subsections, we will focus on the
main security attributes. For further analysis about this
topic we recommend the chapter: Introduction To Soft-
ware Security Concepts of [19].

A. Confidentiality

Confidentiality: consists on mechanisms to forbid
unauthorized parties to access certain data. This can
be achieved with authentication and role based access
control approaches, for example.

This concept is quite simple, we want private data to
remain private. To achieve this, encryption with robust
algorithms and role based access controls must be used.

To dive into the encryption topic, [2] is recommended.

B. Integrity

Integrity: make sure only authorized users can create,
remove or change certain data.

This means that information can only be changed by
users with a certain set of permissions. Also, the system
needs to provide its functionalities without unauthorized
manipulation.

Usual mechanisms to preserve integrity are: input
and data validation (ie. not blindly trusting a user) and
role based access controls. Due to the importance of
this attribute, role based access controls is forced by
General Data Protection Regulation in Europe. Recently,
a Hospital from Portugal was fined in €400k because all

the users in the system had the same level of privileges,
i.e., employees or doctors without proper authorization
could see and change medical records that should only
be available to authorized doctors [22].

C. Availability

Availability: ensure that users can use the services
provided by the system when they want or need.

A common attack to this attribute is denial-of-service
(abbr. DoS) because it does not require high skill level
and the consequences can be severe (eg. consider the
financial loss Amazon has for each period of downtime).
To prevent this, companies like Cloudfare provide

“fast, globally distributed and intelligent pro-
tection against sophisticated DDoS attacks.”

This is possible because Cloudfare has a distributed,
redundant network that absorb the flood or superfluous
requests associated with this type of attacks. The refer-
ence [34]] has tutorials on how to use this product.

A quality attribute that we can relate to availability, is
scalability - the ability for a system to handle increasing
load [9].

If this load is unpredictable, elasticity is a desirable
property - adding computing resources when such need
is detected [9]. However we need to be careful of this
increasing load possibly being malicious, due to the
possibility of a DoS.

IV. SOFTWARE DEPENDABILITY

Dependability: builds on security, i.e., aggregates the
security attributes we talked so far (confidentiality, in-
tegrity and availability) plus reliability, maintainability
and safety. We can define dependability as the ability
to deliver a service that can be trusted while avoiding
service failures that can have more serious consequences
than a certain limit [[11]].

Achieving a dependable system is a big challenge
because it conflicts with other attributes important to the
business side of a certain system such as usability. Also,
another constraint is that it can be expensive.

Nevertheless according to a NIST [30]], the impact of
faults in software, due to “inadequate infrastructures for
testing” represented a cost of over $59 billion annually,
but reducible by over $22 billion through feasible im-
provements. These values date to 2002, but we can only
assume they have increased over time.

2[9]’s a great resource on building reliable/maintainable systems

A. Reliability

Reliability is concerned with continuity of correct ser-
vice [11]. Specifically, we wish to reduce the occurrence
of failures - deviations of a system’s service from its
specification [[10] - and are thus usually concerned with
the mean time between them (MTBF [1]]).

Our goal is then to prevent faults from materializing
into failures. To do so we have a variety of approaches,
which will be discussed in Section

It’s important to note that reliability should be a con-
cern not only to those developing highly critical software
(eg. nuclear power stations [9]). Even if failures don’t
pose a safety problem, they can nevertheless
affect a company’s reputation, financials,... [9].

B. Maintainability

A software system may be around for a long time,
requiring new functionalities and/or adjustments to ex-
isting ones (eg. bug fixing). Additionally, it may need
to be deployed in a variety of scenarios, and the team
responsible for the it may change over time.

Maintainability can be considered the ease with
which such operations can be done (adaptation of the
existing software [13]]) typically powered by abstractions
providing simplicity [9]].

The contributions towards dependability include the
ease (leading to reduced cost) in removing newly iden-
tified faults, along with not being prone to inadvertently
introducing new ones.

C. Safety

Safety consists of the absence of negative conse-
quences from the software on its users/environment
(L] [L3].

Important to note that safety will not be a consider-
ation for every software system [11]. Returning to the
nuclear power plant example, it’ll certainly be (a failure
will lead to devastating consequences), but for a generic
website it will most likely not.

The amount of faults we will be able to accept (and
handle by tolerating) will also be highly dependent on
the level of safety required for our system. For critical
systems, formal methods such as inspections and model
checking are a must (VI-B)), for others the associated cost
is a deterrent. Similarly, it may lead to different process
models having to be followed [13], needing to avoid the
unstructuredness of agile methods.

Once again we can identify relationships between
different quality attributes. In this case, the safety of
a system is dependent not just on the mechanisms we

implement to assure it, but also on the availability of
these (useless otherwise).

V. SOFTWARE RESILIENCE

Resilience builds on dependability, i.e., it is the com-
bination of all dependability attributes plus robustness. If
a system is facing changes, for example, in a non-static
environment, it is resilient if it is able to maintain the
persistence delivering its service and still be trusted.

“The word “resilience”, from the Latin
verb resilire (re-salire: to jump back), means
literally the tendency or ability to spring back,
and thus the ability of a body to recover its
normal size and shape after being pushed or
pulled out of shape, and therefore figuratively
any ability to recover to normality after a
disturbance.” [21]

This definition is interesting, we can transpose it directly
to software. If we have a resilient system, we have a sys-
tem that can easily adapt to environment changes without
losing any of the attributes talked before: confidentiality,
integrity, maintainability, etc. We already know that the
addition of these attributes results in a system dependable
but we still need one more attribute to achieve resilience
and that is robustness. Robustness will be defined in the
following subsection.

A. Robustness

Robustness: is an attribute of resilience and it mea-
sures the behaviour of the system under non-standard
conditions. A robust system should operate correctly
even when it is presented with not expected inputs or
extraordinary environment conditions.

With robustness testing we can discover faults (nor-
mally human cause, programming or design faults). If we
find faults, the developer can can fix them and increase
how robust the system is.

There are lot of strategies to perform these tests but
the most relevant, in our opinion, are called fuzzing and
penetration testing. In the former abnormal inputs are
inserted with the goal of discovering vulnerabilities (by
triggering errors) to fix them later. [24] is a good book
about fuzzing, it describes interesting fuzzing areas such
as: fuzzing methods or automation tools to perform this
test and consequently achieve robustness. Penetration
testing has the goal of identifying vulnerabilities but
it is more related to malicious inputs (ie. we adopt an
attacker’s perspective).

[6] More about robustness in [6].

VI. FAULTS

A fault is the potential cause of a deviation in the
system state [27]] (error [L]). This may in turn lead to a
failure, in turn affecting its service (cf. [V-A).

Faults can be in [9]:

o hardware, not the focus of paper, but an example

would be wear and tear of physical components

e software, commonly called bugs. We need system-
atic methods to attempt to identify them (VI-B)

e humans, through mistakes when interacting with
the system that activate bugs (usability is therefore
important), but also when exploiting vulnerabilities
(malice)

Software faults, which we will refer to by their more

common name of bugs, can also be classified as:

« deterministic (Bohrbugs), lead to failure predictably
[27]).

o non-deterministic (Heisenbugs), harder to detect
since failure (manifestation) is often dependent on
another condition [29]

« specific cases, cf. [29].

A particular instance of (security-related) faults
are vulnerabilities, that must be activated (exploited)
through an attack. Interesting to note that the majority
of these faults are due to few simple mistakes (cf. [32]]
for a frequency table).

Another interesting type of faults, and relevant in the
context of dependability, are Byzantines faults. These
are based on the “Byzantine generals problem” (intro-
duced in [33]]), where some generals may send incorrect
information when planning an attack. Our system should
provide correct service in spite of this, usually through
redundancy [9].

Please refer to [11] for a complete taxonomy of faults.

The following sub-sections will go over the distinct
approaches we have for handling faults in our software.

A. Fault Prevention

When first designing the software, we can consider a
set of measures in an attempt to minimize (but ideally
prevent) the introduction of faults [11]].

This is typically done by following best practices, like
those provided by OWASP for security [31].

Coding styles, ensuring the consistency of the code
that’s written (airbnb example), can also be helpful in
order to facilitate peer reviews.

Finally, a test-driven approach (cf. TDD) can be a
valuable aid, particularly in avoiding the inadvertent in-
troduction of bugs in existing features (regression testing,
also explained in [28]]).

B. Fault Removal

However even following best practices, faults are
bound to appear in the code. We thus need methods for
identifying such faults, so that they can be removed.

“At implementation time, we can increase the
dependability of the system through fault re-
moval techniques.” [[10]

Such techniques can be analysis-based or testing-based.

Without diving too deep, the first one means that
the program is not running and we analyse the source
code to identify faults, either through automated tools
like static code analysers, or through manual methods
for which there are various strategies: reviews, analysis,
inspections, etc.

Regarding testing, tests are made in order to see if
the code is doing what is expected to, i.e., we want
to understand if the dynamic behaviour of the code is
correct or not. This can be classified as:

o black-box if we base the tests solely off of the
specification (does it comply?)

o white-box when using the source code as a refer-
ence, aiming for coverage of all possibilities.

There are multiple testing types that can help remov-
ing faults.[28]] is a great resource to carry on on this
topic.

C. Fault Tolerance

We can’t expect to identify every existing fault, due
to both human error and shortcomings in the available
automated tools (recall of 1 is infeasible). Dijkstra
famously commented [12] on the “fantastically high”
number of inputs that must be considered when testing,
stating that we can never assure ourselves of the absence
of bugs (faults). Additionally, manually fixing faults is
costly, particularly so when maintainability is lacking.

Another level of protection is therefore needed, to
what could be considered a defense in-depth approach.

Fault tolerance techniques are applied at execution
time [10], and are meant to handle faults by reacting
to their manifestation [21l], providing correct service
in spite of them. In some cases though, service may
experience some degradation, even if we avoid system
failure [9]]. There are many such techniques, but we can
typically categorize them into three groups:

« Redundancy: where we create several copies of
the same software, so that failure of one does
not lead to the failure of the system as a whole.
A common example is N-version programming,
whereby the same software is be developed by

https://github.com/airbnb/javascript

several independent teams, all following the same
specification. This is then used to identify faults in
one of them (eg. if we have two in disagreement -
comparison [10]]) and possibly make a decision in
spite of this (eg. when we have three, with two in
agreement - majority voting [10]). Obviously one
needs to understand whether this technique should
be applied to their case, given the high costs that
are needed (a typical example would be for critical
systems such as aircraft sensors).

o Recovery: through transformation of the system
state into one that’s fault free [11]. A common
example is through rollback, that is, registering all
operations undertook (logging) or saving current
state (checkpointing), in a stable storage [23l], so
that the system can return to a certain state in
case of failure (common in databases, for instance).
Another that we could consider is a watchdog [27],
detecting failures to then restart the software.

o Acceptance Test: where we test the result of the
program [10]. If it fails we consider the existence of
some fault, even though we can’t identify its origin
[10]]. In some scenarios, parity checking could be
an example. A common application are one-way
functions, where it’s hard to compute but easy to
validate (therefore not much overhead in applying
this).

Important to note though, that fault tolerance is not a
substitute for the remaining mechanisms we have stud-
ied, and should be looked at as a final barrier between
service and failure.

D. Fault Forecasting

There are techniques for estimating the number of
faults in our systems, and therefore attempt to quantify
its dependability.

By far the most interesting would seem to be fault
injection given its remaining benefits [27]]. By introduc-
ing faults and seeing how the system reacts, we can test
the fault tolerance mechanisms’ efficiency. From here
we can extrapolate the number of existing, and not yet
handled, faults (assess our coverage [27]). [35] and [36]
are two great starting points to assess mobile systems
through fault injection.

Fault forecasting helps us assess the confidence we can
place in our system [[11]]. For this end, Netflix famously
employs chaos monkeys [235]].

VII. CONCLUSION

Defining software quality and dependability concepts
is not a trivial task. With this paper we tried to provide
brief descriptions based on reliable references for each
topic while exposing some of our critical analysis. The
definitions on this survey are a solid starting point into
each topic and if the reader wants to dive into a bit
deeper in one specific, we tried to always provide further
readings for more in-depth analysis.

REFERENCES

[1] ‘Software Quality and Dependability’ slides

[2] William Stallings. Cryptography and Network Security: Princi-
ples and Practice. Pearson, 2017.

[3] Barbara Guttman, E Roback. An Introduction to Computer
Security: the NIST Handbook. 1995

[4] National Institute of Standards and Technology. Standards for
Security Categorization of Federal Information and Information
Systems. 2004

[5S] Walter L. Heimerdinger Charles B. Weinstock. A Conceptual
Framework for System Fault Tolerance. 1992.

[6] Zoltin Micskei, Henrique Madeira, Alberto Avritzer, Istvdin Ma-
jzik, Marco Vieira, Nuno Antunes. Robustness Testing Tech-
niques and Tools. Springer, Berlin, Heidelberg, 2012.

[7] 610.12-1990 - IEEE Standard Glossary of Software Engineering
Terminology
https://ieeexplore.ieee.org/document/159342/definitions#
definitions

[8] 1061-1998 - IEEE Standard for a Software Quality Metrics
Methodology
https://ieeexplore.ieee.org/document/749159/definitions#
definitions

[9] Kleppmann, Martin. Designing data-intensive applications: The
big ideas behind reliable, scalable, and maintainable systems. ”
O’Reilly Media, Inc.”, 2017.

[10] Heimerdinger, Walter L., and Charles B. Weinstock. A con-
ceptual framework for system fault tolerance. No. CMU/SEI-92-
TR-33. CARNEGIE-MELLON UNIV PITTSBURGH PA SOFT-
WARE ENGINEERING INST, 1992.

[11] Avizienis, Algirdas, et al. ”Basic concepts and taxonomy of
dependable and secure computing.” IEEE transactions on de-
pendable and secure computing 1.1 (2004): 11-33.

[12] E. W. Dijkstra. Structured Programming.
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD268.PDF
[13] Sommerville, Ian. Software Engineering 10th edition. Peason

Education, 2016.

[14] Bellovin, Steven M. On the brittleness of software and the
infeasibility of security metrics. IEEE Security & Privacy 4.4
(2006): 96-96.

[15] Mead, Nancy. Security Requirements Engineering. 2006.
https://resources.sei.cmu.edu/asset_files/WhitePaper/2010_019_
001_297315.pdf

[16] Ben Shneiderman. The Eight Golden Rules of Interface Design.
https://www.cs.umd.edu/users/ben/goldenrules.html

[17] 1023-2004 - IEEE Recommended Practice for the Application
of Human Factors Engineering to Systems, Equipment, and
Facilities of Nuclear Power Generating Stations and Other
Nuclear Facilities
https://ieeexplore.ieee.org/document/1440988/definitions#
definitions

https://ieeexplore.ieee.org/document/159342/definitions#definitions
https://ieeexplore.ieee.org/document/159342/definitions#definitions
https://ieeexplore.ieee.org/document/749159/definitions#definitions
https://ieeexplore.ieee.org/document/749159/definitions#definitions
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD268.PDF
https://resources.sei.cmu.edu/asset_files/WhitePaper/2010_019_001_297315.pdf
https://resources.sei.cmu.edu/asset_files/WhitePaper/2010_019_001_297315.pdf
https://www.cs.umd.edu/users/ben/goldenrules.html
https://ieeexplore.ieee.org/document/1440988/definitions#definitions
https://ieeexplore.ieee.org/document/1440988/definitions#definitions

[18] Mead, Nancy R., and Ted Stehney. "Security quality require-
ments engineering (SQUARE) methodology.” ACM SIGSOFT
Software Engineering Notes 30.4 (2005).

[19] Cotroneo, Domenico, ed. Innovative technologies for depend-
able ots-based critical systems. Springer, 2013.

[20] Fabian, Benjamin, et al. ”A comparison of security requirements
engineering methods.” Requirements engineering 15.1 (2010): 7-
40.

[21] Wolter, Katinka, et al., eds. Resilience assessment and evalua-
tion of computing systems. Berlin, London: Springer, 2012.
[22] Visdo — CNPD: Hospital do Barreiro multado em 400 mil

euros por permitir acessos indevidos a processos clinicos
https://visao.sapo.pt/exameinformatica/noticias-ei/mercados/
2018-10-19-cnpd-hospital-do-barreiro-multado-em-400-mil-euros-por-permitir-acessos-indevidos-a-processos-clinicos/

[23] Treaster, Michael. ”A survey of fault-tolerance and fault-
recovery techniques in parallel systems.” arXiv preprint
¢s/0501002 (2005).

[24] Sutton, Michael, Adam Greene, and Pedram Amini. Fuzzing:
brute force vulnerability discovery. Pearson Education, 2007.

[25] The Netflix Simian Army - Netflix TechBlog
https://netflixtechblog.com/the-netflix-simian-army- 16e57fbab116

[26] Wilson, Kelce S. ”Conflicts among the pillars of information
assurance.” IT Professional 15.4 (2012): 44-49.

[27] Carreira, Jodo, and Jodo Gabriel Silva. "Why do some (weird)
people inject faults?” ACM SIGSOFT Software Engineering
Notes 23.1 (1998): 42-43.

[28] Ammann, Paul, and Jeff Offutt. Introduction to software testing.
Cambridge University Press, 2016.

[29] Heisenbug - Wikipedia
https://en.wikipedia.org/wiki/Heisenbug

[30] Planning, Strategic. "The economic impacts of inadequate in-
frastructure for software testing.” National Institute of Standards
and Technology (2002).

[31] OWASP Secure Coding Practices Quick Reference Guide
https://owasp.org/www-pdf-archive/OWASP_SCP_Quick_
Reference_Guide_v2.pdf

[32] Barbosa, Raul, et al. "The most frequent programming
mistakes that cause software vulnerabilities.” arXiv preprint
arXiv:1912.01948 (2019).

[33] Lamport, Leslie, Robert Shostak, and Marshall Pease. "The
Byzantine generals problem.” Concurrency: the Works of Leslie
Lamport. 2019. 203-226.

[34] DDoS Protection By CloudFlare — CloudFlare DDoS
Guide https://www.a2hosting.com/kb/add-on-services/cloudflare/
using-cloudflare- to-defend-against-ddos-attacks

[35] Cotroneo, Domenico, et al. "Dependability Assessment of the
Android OS Through Fault Injection.” IEEE Transactions on
Reliability (2019).

[36] Gawkowski, Piotr, et al. "LRFI-Fault Injection Tool for Testing
Mobile Software.” Emerging Intelligent Technologies in Industry.
Springer, Berlin, Heidelberg, 2011. 269-282.

https://visao.sapo.pt/exameinformatica/noticias-ei/mercados/2018-10-19-cnpd-hospital-do-barreiro-multado-em-400-mil-euros-por-permitir-acessos-indevidos-a-processos-clinicos/
https://visao.sapo.pt/exameinformatica/noticias-ei/mercados/2018-10-19-cnpd-hospital-do-barreiro-multado-em-400-mil-euros-por-permitir-acessos-indevidos-a-processos-clinicos/
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://en.wikipedia.org/wiki/Heisenbug
https://owasp.org/www-pdf-archive/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://owasp.org/www-pdf-archive/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://www.a2hosting.com/kb/add-on-services/cloudflare/using-cloudflare-to-defend-against-ddos-attacks
https://www.a2hosting.com/kb/add-on-services/cloudflare/using-cloudflare-to-defend-against-ddos-attacks

Confidentiality

Integrity

Availability

h 4

Security

APPENDIX

Reliability

Maintainability

Robustness

Safety

h 4

Dependability

Fig. 2. Concept Hierarchy (adapted from [1]])

¥

Resilience

	Introduction
	Software Quality
	Software Views
	Quality Requirements
	Quality Attributes
	Quality Factors
	By Design

	Software Security
	Confidentiality
	Integrity
	Availability

	Software Dependability
	Reliability
	Maintainability
	Safety

	Software Resilience
	Robustness

	Faults
	Fault Prevention
	Fault Removal
	Fault Tolerance
	Fault Forecasting

	Conclusion
	References
	Appendix

