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I. INTRODUCTION

When releasing a dataset containing personal information,
care must be taken to ensure the individuals’ privacy is not
infringed upon.

Even if explicit identifiers are removed, an attacker with
background knowledge on their target may use it to identify
the seemingly anonymized record (record-linkage threat [3] -
cf. Sec[lI-G).

Further anonymization operations are required to achieve
acceptable privacy levels, inevitably reducing the data’s utility.

In this paper we detail the process that went into anonymiz-
ing ProPublica’s (in)famous COMPAS dataset ([4],[2]]), with
the aid of the ARX tool [1].

Sec. [lI] focuses on preparing the dataset for the subsequent
(Sec. application of privacy models. Sec. will then
explore the results, in the context of the trade-off between
privacy and utility.

II. DATASET

A. Characterization

The dataset [2] contains information of criminal offenders,
controversially used by the COMPAS risk assessment tool
[7] to compute their risk of recidivism and aid decisions of
the US’s legal system [6]. It contains demographic/criminal
history information [6].

This was a straightforward choice for the assignment, given
the lack of non-synthetic datasets with this amount of un-
tampered sensitive personal information - those available are
pseudoanonymized to respect the individuals’ privacy and/or
data protection regulations.

B. Sanitization

We perform the filtering described in the original analysis
[2]], leaving us with 6172 records (originally there were 7214).

preprocessed = df[
(df ["days_b_screening_arrest"]
(df ["days_b_screening_arrest"] >=
df ["is_recid"] != -1) &
df ["c_charge_degree"] != "O") &
(df ["score_text"] != 'N/A’")

<= 30) &
-30) &

While some columns still contain missing values, we will
not remove them as is common for applications such as ma-
chine learning analysis ([6],[7]), because all ARX’s methods

Attribute Classification (Sec. [[I-C)

PII QID SA (sensitive)
id sex c_charge_degree
name dob c_charge_desc

priors_count(*)
decile_score
is_recid

c_case_number | age

race
c_arrest_date™
¢_offense_date™

TABLE 1

correctly handle null values [1]. Those utilizing the released
dataset can then choose how to handle this missing data,
namely resorting to an imputation method.

Since the attributes are all well encoded, we proceed to se-
lect a subset of what were originally 53 columns. This reduces
the models’ search space (aggravated by techniques such as
local generalization), and mitigates the curse of dimensionality
affecting many privacy models (alas, LKC is not supported by
ARX).

The accompanying . ipynb goes over this procedure from
a more practical view, including the code to replicate it.

C. Attribute Classification

Table [ classifies the attributes we have selected for
anonymization.

sex, dob and race are classic quasi-identifiers, since they
are common background information to have on someone, and
together have high values for distinction and separation - the
two metrics used as indicators of QIDs.

As can be seen from Fig[T] together these uniquely identify
approximately 96.4% of the records in our dataset.

Quasi-identifier Distinction Separation
sex 0.06483% 31.30318%
race 0.19449% 60.92954%
age 2.00072% 96.98165%
dob 88.52512% 99.99191%
sex, dob, race 96.40194 % 99,99748%
sex, dob, age, race 096.40194 % 99,99748%

Fig. 1: Values for distinction and separation (abridged)




The remaining QIDs identified have the caveat that we
assume the attacker knows the target is in the dataset (has
committed a crime, but not which).

Even so, the identification of QIDs is very tricky procedure,
as some attributes can be classified differently depending on
how we model the attacker, and also on our own personal
interpretation. For this reason, what we what we present in
Table E] should not be considered definite, and will be subject
to slight tweaks during the experimentation phase. Namely, the
indicators of a crime having been committed - marked with
™ - but not which, could be interpretted as either QID or SA.

Regarding non-sensitive attributes, we did not identify any.
As aforementioned, we have demographic data (typically
PII/QID) and criminal history information (typically sensitive
since the individual may not wish its disclosure - although in
some countries it could be deemed public).

Note that we kept age and dob, even though the former
can be directly derived from the latter, as their formats lead
to different coding models (Sec. [[I-DJ.

D. Attributes’ Coding Models

We define hierarchies for the quasi-identifiers which will be
manipulated by ARX when applying each privacy model.

For the date attributes, a masking hierarchy is used, at a
first level generalizing the least significant digit of the day,
then the most, and upwards to the month and year:

Level0 | Levekl |  Leve2 | e
1919-10-14 1919-10-1% 1919-10- 191910
1933-03-07 1933-03-0% 1933-03- 1933-03
16351724 1G35-17-2% 162517+ 163517

For age we define intervals of increasing size (smallest is
of 3 years):

Leve-0 | Levelk1 | Level2 |
18 [18, 21[ [18, 24[ |
19 18, 21] [18, 24[ |
20 18, 21] [18, 24[ |
21 [21, 24] [18, 24[ |

Finally, for sex and race we use the ordering-based
hierarchy for a single global generalization - *:

Level-0 Level-1
Ferale *
Male ®
Level-0 Level-1
African-American *
Asian *
Caucasian *
Hispanic "

MNative American
Other "

E. Anonymization Goal

Our goal would be to release the dataset to help study these
automatic analysis systems, particularly their fairness ([7],[6l),
without compromising the identity of the individuals in it - ie.
continuing to impact their lives after serving their sentences.

Ideally we wouldn’t even be able to tell if someone
was in the released dataset (table-linkage[S] / membership
disclosure[1]).

FE. Privacy Risks

The attributes’ distributions lead to distinct QIDs for each
record, and so the average re-identification risk is 99.9838%
(a single pair of QIDs is identical - lowest prosecutor risk of
50%).

This average risk drops to 92.6766% if we don’t assume
the attacker has criminal-related dates as background knowl-
edge (ie. now considering them sensitive attributes), but it is
nevertheless a grim starting point for our process which we’ll
aim to significantly improve.

Regarding the possible re-identification risks, we can iden-
tify some scenarios where each may be a concern:

o prosecutor risk (specific target) is probably the most
critical. An example would be in candidate screening,
where an attempt is made to identify the candidate in
the dataset. Similarly, a nosy acquaintace, or a co-worker
wanting to throw another under the bus.

e journalist risk (any one individual as target) will always
pose some threat, with researchers attempting to apply
their de-anonymization methods. If the results are publi-
cized, they may be replicated by others.

o for marketer risk (as many targets as possible) we can
consider an attacker which, while not particularly related
with any record, will want to de-identify as many records
as possible to extort their owners’ over its disclosure.

G. Privacy and Utility Requirements

To support our goal of helping those researching fairness in
automatic decision-making, we will minimize the anonymiza-
tion operations performed on the race and sex attributes,
since these are the ones under study in those cases ([6],[7]).
In fact, considering the chosen coding models, these should
ideally remain unchanged.

Regarding privacy requirements, we will consider increas-
ingly high threat levels [S]], choosing appropriate privacy
models for each (Sec[llI-A) :

« not identifying the target’s record (record-linkage)

« additionally, not infering any sensitive value, from the -

now several - possible records (attribute-linkage)

« additionally, not concluding the presence of the target in

the dataset (membership-linkage)

We thus want to minimize the utility loss of the released
dataset compared to the original, among the solutions with
acceptable privacy levels. For record-linkage we can consider
the equivalence class sizes (namely the minimum and average),
but when considering sensitive attributes this task becomes



much more challenging - we’re not provided any particularly
enlightening metric, and will mostly resort to the algorithm’s
own parameters for the privacy-focused restrictions they im-
pose.

Nevertheless, we should not end up with one single obvious
solution given the nature of this problem - multi-objective
optimization. While some configurations may provide better
solutions according to both objectives (privacy/utility), in the
end a decision must be made over which ”good” solution to
move forward with.

III. PRIVACY MODELS
A. Selection

Following [S]’s table, we select a model targeting each
privacy threat, among those supported by ARX.

o for record-linkage, k-anonymity
« for attribute-linkage, both 1-diversity and t-closeness
« for membership-linkage, J-presence

As such, we will incrementally explore each concern that
should be taken when anonymizing.

1) k-anonymity: ??

the classic privacy model.

It creates groups of records of size k (equivalence classes) in
which all the QIDs have the same values. As such, an attacker
in possession of background information (QIDs) will not be
able to single out the target’s record (record-linkage).

It is nevertheless highly flawed, first and foremost by
completely neglecting sensitive attributes.

Another significant flaw of this algorithm (and those based
on it), is its deterioration with higher number of QIDs, because
creating an equivalence class for records will require more
and more generalization. Enabling suppression we can discard
the outliers (particularly distinct records), but the curse of
dimensionality still looms.

The relaxation introduced by the LKC model, considering
only combinations of L QIDs for the equivalence classes,
would have us certainly choose it, if only it were implemented
in ARX.

2) I-diversity / t-closeness : although it will (almost surely)
require more generalization to ensure the required diversity,
the removal of the attribute-linkage threat is essential. For
example, imagine if even we have a large equivalence class,
all records have committed a first degree felony. An attacker,
while not being able to identify the specific record, will still
learn this fact from the individual’s class.

In l-diversity, 1 introduce a constraint on the diversity of
the sensitive attributes, more specifically on the number of
unique values in each equivalence class. For example, in our
dataset, if we have four records in the same equivalence class,
to respect 4-diversity each record needs to be arrested for a
different crime. One major flaw of this algorithm is the utility
loss, and studies say that 3-diversity datasets are worse than
100-anonymity in terms of utility [8]. In addition, 1-diversity
does not require that the distribution of the values (even if

diverse) is the same as the rest of the data, and is thus prone
to probabilistic information gain attacks.

With this in mind, we also tried t-closeness. In this privacy
algorithm we also want to make sure that the distribution of
sensitive values in each class are close (upper-bounded by a
threshold t) to the global population’s.

3) O-presence : J-presence is concerned about being
able to infer the presence of an individual in the dataset
(membership-disclosure), controlled through the 6,4, param-
eter. Infering their absence is also considered in the algorithm
- with ,,;, - but in our case that is not a concern.

If the attacker has information about the global population
from which the released dataset was drawn, they can use it to
infer with a given probability that the target’s in the dataset.
This probability is derived from the number of records for
the target’s equivalence class in the dataset vs. the population,
which is exactly what J-disclosure controls with d,,,4, (upper-
bounds it).

For datasets such as this one, just knowing someone’s in it
is sensitive. Record/attribute-linkage differ in that they assume
the victim’s record is in the dataset [5]].

B. Configuration

In this section we describe the parameter space we’ll be
exploring in the Analysis step, with some being specific to a
privacy model and as such described separately.

The following list details ARX’s general parameters, which
we’ll tune in all configurations:

o Attribute weights: in Sec[lI-G| we specified that we

should minimize the anon. operations on race and sex.
ARX supports this by allowing us to specify higher
weights for these QIDs, for which it will attempt to
reduce the loss of information [1] (when running with
metrics guided by the generalization).
Alternatively we can define the maximum and minimum
generalization level, but that reduces the search space
instead of just biasing it. An even worse choice would be
to consider them insensitive so they are not manipulated
at all, but this would ruin all privacy considerations.

o Suppression limit: percentage of records we allow the
removal of. Necessary to prevent outliers from deterio-
rating their equivalence class’s utility (making it more
general and thus of broader scope / larger).

We found that we can leave suppression limit at 100%,
since ARX presents us with the result space, and full
suppression will only be the optimum solution if it is the
only solution.

Nevertheless, we can also bias the suppression vs. gen-
eralization choice.

o Geneneralization type: when executing the anonymiza-
tion, we can specify (depending on the model) whether
to use a global or local transformation method. In global,
all values are generalized to the same hierarchy level
and thus we unnecessarily lose out on a lot of utility for



execution speed - for local transformation where different
levels are applied for each class, it takes a lot longer.

o Utility Measure: we have many such metrics in ARX
which will guide the anonymization process to the opti-
mum transformation. Most are either based on the levels
of generalization applied (eg. loss, precision), or on the
equivalence class sizes (eg. average, discernibility).

ARX will optimize the utility metric under the models’
restriction, and present us with the optimum (but also allows
us to traverse the result space, to explore certain trade-offs).

Some solutions will be obviously better in both privacy and
utility (dominate), but together a Pareto surface is formed from
which it is up to us to choose the best one. The utility metric
just turns the ‘“2D” optimization problem into “1D”.

1) k-anonymity: Configuring k-anonymity is relatively
straightforward, given that k is the only parameter and its
impact is easily verifiable in the outputted dataset/metrics.

As mentioned, k represents the size of the equivalence
classes for which the contained records are indistinguishable
when accounting only for the QIDs.

However, this k is a minimum, and some classes may end
up larger - not enough variety in the original dataset, or the
more likely scenario that too much generalization was needed.

In the dataset, there are is a record that is an outlier, with a
single individual aged 96, while the next youngest is 83. This
results in a lot of unneeded generalization. To solve this issue
we can:

« admit suppression to remove such outliers

« use local generalization, where the 96 year-old is gener-
alized with some other senior citizens, but the younglings
not as much (ie. no longer 13+ year bucket sizes).

e (could) use LKC, with [ < |QID]

A final important point, is that ARX forces us to select
a privacy model for each sensitive attribute, but k-anonymity
does not consider them at all. To “solve” this we marked them
as insensitive.

2) l-diversity: As said before, with l-diversity we try to
guarantee 1 distinct values for each sensitive attribute in the
equivalence classes. Entropy based l-diversity exists, taking
into account their distribution, but we’ll leave this concern for
t-closeness which offers a better solution.

Again we have a single parameter 1, but this time not
globally applicable to all sensitive attributes (as k was for
QIDs). This gives us increased flexibility, but also a greater
challenge in exploring all possibilities.

Each sensitive attribute has a different distribution and
number of distinct values, and as such we explored giving
different 1’s to each.

Giving a concrete example, charge_degree has only
two values - M(isdemeanour) and F(elony), meanwhile
c_charge_desc has 389. Thus, charge_degree can
only have an 1 of at most 2, where there could be equivalence
classes with just murders in the c_charge_desc (1st/2nd

degree). But, if charge_degree’s 1 is 2, we couldn’t just
have felonies (would need at least one misdemeanour).

3) t-closeness: Similarly to l-diversity, we specify t for
each sensitive attribute. Here, the ideal values from a pri-
vacy point of view (minimal t) are only really achievable
by features with few distinct values, or we risk exploding
equivalence classes’ sizes.

There are several variations of the Earth mover’s distance
supported by ARX, adequate to different attribute types [L]:

o ordered ground: “calculates distances based on the order
of values” [1]]. Applied to the numeric decile_score
and priors_count features.

o equal ground: which considers all values equally distant.
This one is adequate for categorical features, which
even if represented numerically, their subtraction is not
meaningful. This is the case of charge_desc.

« hierarchical: we did not use this one.

4) o-presence: Again, 0,,,, represents an upper bound on
the probability an individual is in the released dataset.

ProPublica’s dataset contains COMPAS scores for Broward
County, for the years 2013 and 2014, which is already a subset
of the 18610 records they originally obtained [3]. However, we
don’t know these, so when applying J-presence we’ll have to
consider a subset of the one we’re working with, to properly
verify 4’s condition.

In ARX we can select a random sample of the dataset on
which to apply this model, and as such we’ll have an additional
parameter - the sampling probability.

With d-presence, we could know an individual was arrested,
and as such would be in the full dataset, but we release a
sample guaranteeing that each equivalence class has (k* (1 —
s))/s non-released member records.

IV. RESULTS ANALYSIS

Tablll contains all runs we’ll describe this section. In
it, there are configurations that provide max privacy at the
expense of lower or null utility, or vice-versa. Also, we found
solutions that explore a great balance between privacy/utility.

We will use the following metrics to compare different
configurations. These are only a subset of those provided by
ARX, but should give an adequate view into the privacy/utility
trade-off:

« minimal/average class size: provide insight into the
record-linkage threat - the lower the likelier.

« prosecutor risk mode: based on the % intervals provided
in ARX ’s Analyze Risk - Distribution of risks (table)
view, useful to understand privacy gain.

e % missing for race/sex: provide insight into the data
utility for fairness studies

« utility measure value: provides insight into the general
utility of the original dataset, but depends on the one that
is used



o classifier’s relative accuracy: ie. comparing it in the
original dataset with is_recid as the target feature
(will they actually re-offend?). Useful to understand util-
ity loss.

We annex (in results/) screenshots of the different ARX

perspectives from which these metrics were extracted, for each
configuration in Table

A. k-anonymity

1) Privacy vs. Utility: We started by varying the general
parameters described in Sec[lII-B] and used a low k of 3 to
see how they impact privacy/utility without much noise from
anonymization operations.

For this, K3 (Tab[ll) acts as a baseline, keeping all of
ARX’s defaults. We immediately notice the terrible average
equivalence class size of 2057 (out of 3, with one of size
5385). It is clear something is wrong as our only restriction,
k, is very small considering the size of our dataset.

Admitting suppression in K3-5100, we notice an immedi-
ate improvement - average class size of 53 - albeit at the cost
of removing 64 records (outliers which were forcing other
records to be generalized much more than they should).

However, the real improvement comes with local general-
ization, where we don’t force the same generalization level to
all of the QID’s values. Here, we have an average class size of
3.41, much closer to the desired k of 3. This brings the cost
of optimizing a much larger search space, which we control
with the number of iterations it performs.

Attribute weights, which we wused for prioritizing
racel/sex are not noticed on their own, but will
impact the utility metric’s decision of the best solution.
In K3-S100-L100-W, there is now no generalization on
race (which given its hierarchy, if it existed then it’d be
missing).

This last configuration of the general parameters, is what
we’ll use moving forward when varying k and the utility
measure, as it correctly prioritizes attributes, and its class sizes
are close to the desired value (k=3).

We then increase k to 10, 20, 50 and 100. Obvious
takeaways are the reduced reidentification risk, at the cost of
increased utility loss.

Eventually, k is not satisfiable without suppressing outliers,
as the generalization which they would force upon many
other records, does not outweight their removal anymore. With
k=50, the 96-year old discussed in Sec|III-BI|is suppressed,
and with k=100 so too are another 52 records.

We end up choosing k=20 since it removes zero outliers.
From then, we varied the utility measures in ARX (cf. Tab@),
considering:

o Height / Precision: penalize higher generalization levels

o Average Equivalence Class Size

« Discernibility: penalizes particularly deviant class sizes

However, none of them take into account attribute weights,
often fully suppressed (unlike loss). We can confirm that by
observing the % of missings in race/sex in those cases.

2) Re-Identification Risk: Not surprisingly, as k increases,
the re-identification risk reduces.

The highest prosecutor risk (i.e journalist’s) is based on the
smallest equivalence class size (1/min(|c|)), and as such with
k=20, we have 5% compared to the 33.3% presented in k=3
(privacy vs. utility tradeoff). Of course for extreme privacy,
k=100 can be chosen for an even higher prosecutor risk of
1% at the expense of data utility.

Ideally from an utility point of view, the average prosecutor
risk (ie. marketer’s) would be equal to (1/|k|). However, it’s
lower in practice: for k=20 we have 4.212%, k=50 we have
1.669%, ... This is nevertheless good for privacy, since it gives
us a margin to introduce considerations on sensitive attributes.

B. [-diversity

1) Privacy vs. Utility: We now change the sensitive at-
tributes” 1, starting with a baseline of 2 for each. When
compared to previous K=20 without any l-diversity, we see
almost no difference. Both configurations have zero records
surpressed, same utility loss and prosecutor risk. Only the
missing % of race and average class size is a bit higher in
I-diversity. Of course this is expected, to satisfy the 1 we
need more generalization. Therefore, it leads to an increase
of the class sizes, explaining the higher missing values in race
attribute.

Now we should consider different values for each, account-
ing for their distributions. For this we must restrict 1 to be
both smaller (or equal) than k and than the number of distinct
values for the specific sensitive attribute.

As such, for charge_degree and is_recid, 1 will be
set to 2 since they are binary and decently balanced.

For the remaining attributes it’s a bit trickier.

e For decile_score we have 10 distinct values (1
through 10), with relative frequencies between 0.05 and
0.2, but mostly balanced. As such we’ll assign an 1 of 5,
which ensures significant diversity even if it can result in
some skeweness (unavoidable with distinct 1-diversity).

e For priors_count we have 36 distinct values (be-
tween O and 38), more than with decile_score but
with a very skewed distribution, so we’ll also give an 1
of 5 to compensate.

e For charge_desc we have 389 distinct values, with
some happening very few times. We’ll leave 1 as 10,
which should ensure good diversity in the crimes com-
mitted, given charge_degree’s 1 ensures we have both
felonies and misdemeanors.

From decile_scores with 1=5, there may be equivalence
classes where the minimum is score is 6. We tried increasing
1 to 8 but with worse results.

Note that these runs are very slow (up to 30min.), due to
all the constraints faced by the anonymizer when optimizing.

2) Re-Identification Risk: As expected, the re-identification
risk is even lower than 20-anonymity configuration. Since we
have more generalization to satisfy the restrictions introduced
by I-diversity, these bigger equivalence classes result in a lower



re-identification risk. Once again, we see the privacy/utility
tradeoff.

C. t-closeness

1) Privacy vs. Utility: The parametrization in t-closeness is
far less obvious, as the the complexity of the distance metric
(EMD) makes t’s impact much less palpable. It also takes
way more time to tune, with worse results.

The default t of 0.001 is way too low, as it made the records
fully generalized to make them have the same distribution
(ie. a single equiv. class of size 6172). The only thing we
learn from this run is that the relative classification accuracy
is irrelevant as a comparison metric, and mostly dependent on
the sensitive attributes (it was 103.84% without any QID).

We then increased it significantly to 0.1 across the board,
which just led to the suppression of 1175, still leaving a single
equivalence class.

Similarly to what we did with I-diversity, we adjusted t for
the attributes with complex distributions. Several configura-
tions were tested but none beat those with 1-diversity.

2) Re-ldentification Risk: Once again, as expected, since
QIDs have an high level of generalization the re-identifications
risks are lower than in the last scenarios.

D. §-presence

For ¢-presence, every configuration we tried either required
using a very small sample, and thus lose out on a lot of data
(utility), or it applied way too much generalization.

The reduced number of records wouldn’t really be a prob-
lem, given that many similar datasets (when it comes to their
application) are small (eg. German is approx. lk, Ricci is
approx. 100 [7]), but the problem comes from how handpicked
these are to guarantee J-presence.

However, it is an honorable mention for anyone who MUST
achieve good privacy results, however poor the underlying data
is.

V. DIFFERENTIAL PRIVACY
A. Selection

The assignment proposed applying differential privacy for
two functions, but ARX did not appear to support queries like
those we had studied.

We identified several libraries/packages supporting these,
namely Google’s in C++|Z| and Benjamin Rubinstein’s in
but we opted with the Python package dp-stats [9],[10].

B. Query Functions

Continuing with our goal of supporting research in fairness,
our query functions (annexed in diffpriv/) aim to identify
racial bias in the COMPAS tool.

They will consider the individuals of a race that did
not recidivate (is_recid==0), and operate on their risk
scores that were automatically computed. We provide

Uhttps://github.com/google/differential-privacy
Zhttp://www.bipr.net/diffpriv/

the mean (risk_score_mean.py) and the histogram
(risk_score_histogram.py) of these values.

Besides being able to specify the race, the scripts we submit
also allow the parameterization of € and 0 - differential-privacy
specific parameters.

C. Analysis

Running the median query on African Americans and
Caucasians, we appear to identify the suspected bias (also seen
in the histogram query (FigH), although this one is shown for
conciseness):

diffpriv

diffpriv

And even though the results are perturbed by differential
privacy’s Laplacian noise, they’re not far off the actual values:

However, if we look at the distribution of race in our
dataset (Fig[2), the different frequencies will vary the scale of
noise to be added in each case. Concretely, if we knew a Native
American had been arrested, we would deduce a lot more
about his score just from that average - but in DP the presence
of a record should be (relatively) imperceptible through the
queries. As such, we will need much more noise, leading to
extreme deviations (Fig[3), often to invalid values.

Fig. 2: race distribution, for is_recid==

diffpriv

diffpriv

Fig. 3: Large noise for Native Americans

Important to note that the noise can be controlled with the
€, with higher values decreasing it.

Similarly, for the histogram query, we observe the noise
added to each count (FigH), and also some bins representing
more than one score to achieve the privacy requirements (for
the less frequent races).


https://github.com/google/differential-privacy
http://www.bipr.net/diffpriv/

VI. DISCUSSION

After analysing all the results, there is a configuration
that stands out when thinking of the balance between utility
vs privacy: K20-L2-Score5-Descl0-Priors5. Adding
I-diversity to k-anonymity fixes the neglection of sensitive
attributes mentioned in Sec.??, and considering each sensitive
attribute’s 1 independently gives us solid privacy assurances
while not deteriorating their utility. Therefore, we achieve a
good level of privacy while maintaining the usefulness of the
dataset. Despite the lower utility than in the original dataset, in
the I-diversity results it would be way harder to both identify
a record or infer its attributes.

Comparing with the original dataset, we see a drastic
reduction in the separation of the QID combination, from
100% to 2.474%. Furthermore, the highest prosecutor risk
drops to 5% and the average to 3.599%, both down from
100%.

VII. CONCLUSION

Given the nature of the assignment - consulting service -
we abstained from mathematical formalism, to instead pro-
vide intuitive explanations into the anonymization procedure
undertook. With these in mind, and with the annexed resources
referenced throughout, it should be simple to make personal-
ized tweaks before publicizing the dataset.
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ID Algorithm Attribute | Suppr. | Generali- | Min/Avg | Pros. race/sex Utility Rel. Classif.
Weights Limit zation Class Risk % Missing Measure Acc.%
K3 3-Anonymity 0 Global 3/2057.333 10.01;0.1]7| 100/100 0.59176 115
(Loss)
K3-S100 3-Anonymity 100 Global 3/53 10.1;1] 1.04/1.04 0.025 111
(Loss)
K3-W 3-Anonymity Race/Sex: 0 Global 3/2057.333 10.01;0.1]| 100/100 0.45397 108
1.0 (Loss)
K3-L100 3-Anonymity 0 Local 3/3.4137 | 125;33.4] | 1.16/0.14 1.533E-9 106
(100 it.) (Loss)
K3-S100- 3-Anonymity 100 Local 3/3.4137 | 125;33.4] | 1.16/0.14 1.533E-9 107
L100 (100 it.) (Loss)
K3-S100- 3-Anonymity Race/Sex: 100 Local 3/3.4137 | 125; 0/1 7.7E-10 115
L100-W 1.0 (100 it.) 33.4] (Loss)
K10-S100- 10-Anonymity Race/Sex: 100 Local 10/12.221] 19;10] 1.554/0 5.1324E-8 | 111
L100-W 1.0 (100 it.) (Loss)
K20-S100- 20-Anonymity Race/Sex: 100 Local 20/23 14;5] 3.1/0.9 9.4E-8 106
L100-W 1.0 (100 it.) (60.64) (Loss)
K20-S100- 20-Anonymity Race/Sex: 100 Local 20/30.6 13:4] 0.85/100 136 (Avg- | 99
L100-W- 1.0 (100 it.) (74.42) ClassSize)
AvgClassSize
K20-S100- 20-Anonymity Race/Sex: 100 Local 20/126 10.1;1] 100/100 400 107
L100-W- 1.0 (100 it.) (71.11) (Disc.)
Discernibility
K20-S100- 20-Anonymity Race/Sex: 100 Local 20/25.609| 14;5] 2.77/0.53 0.518 109
L100-W- 1.0 (100 it.) (51.08) (Height)
Height
K20-S100- 20-Anonymity Race/Sex: 100 Local 20/23.822| 14;5] 11.22/53.79 | 0.0032 108
L100-W- 1.0 (100 it.) (65.64) (Preci-
Precision sion)
K50-S100- 50-Anonymity Race/Sex: 100 Local 50/59.91 | 11;2] 8.08/1.11 5.6484E-7 | 111
L100-W 1.0 (100 it.) (Loss)
K100-S100- | 100-Anonymity | Race/Sex: 100 Local 100/118 10.1;1] 8.03/2.69 1.25E-4 110
L100-W 1.0 (100 it.) (Loss)
K20-L2 20-Anonymity Race/Sex: 100 Local 20/26.4 14;5] 5.4/0.65 9.41E-8 112
2-Diversity 1.0 (100 it.)
K20-L2- 20-Anonymity Race/Sex: 100 Local 20/28.6 14;5] 10.5/0.016 9-41E-8 112
Score5- 2-Diversity 1.0 (100 it.)
Desc10-
Priors5
K20-L2- 20-Anonymity Race/Sex: 100 Local 20/27.8 14;5] 18.1/13.2 6.32E-5 116
Score8- 2-Diversity 1.0 (100 it.)
Desc10-
Priors5
K20-T0.001 | 20-Anonymity Race/Sex: 100 Local 6172/6172) 10.01;0.11| 100/100 0.6509 103
0.001- 1.0 (100 it.)
Closeness
K20-T0.1 20-Anonymity Race/Sex: 100 Local 4997/4997| 10.01;0.1]| 100/100 0.4708 101
0.1-Closeness 1.0 (100 it.)
K20-TO.1- 20-Anonymity Race/Sex: 100 Local 67/171.444 10.1:1] 36.9/20.3 6.311E-5 101
Score0.2- 0.1-Closeness 1.0 (100 it.)
Desc0.5-
Priors0.2
K20-TO.1- 20-Anonymity Race/Sex: 100 Local 20/60.5 10.1;1] 36.5/21.6 5.644E-7 102
Score0.2- 0.1-Closeness 1.0 (100 it.)
Desc0.65-
Priors0.25
K20-TO.1- 20-Anonymity Race/Sex: 100 Local 20/46.6 10.1;1] 34.73/21.01 5.644E-7 93
Score0.2- 0.1-Closeness 1.0 (100 it.)
Desc0.75-
Priors0.25
K20-TO.1- 20-Anonymity Race/Sex: 100 Local 20/53.66 | 10.1;1] 33.16/21.62 | 5.644E-7 101
Score0.2- 0.1-Closeness 1.0 (100 it.)
Desc0.75-
Priors0.5
K20DP Delta Presence | Race/Sex: 100 Global 23/113 10.1;1] 6.72/6.72 0.183 85
(0; 0.5) Sam- | 1.0
pling:0.15

TABLE II: Better table visualization in |https://6p270.csb.app/
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Figure 1
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