
Study about Secure Multiparty Computation
Privacy and Security - Assignment 2

Departamento de Engenharia Informática
Universidade de Coimbra

José Donato
donato@student.dei.uc.pt

Index Terms—Secure Multiparty Computation, Blockchain,
Enigma, Private Set Intersection, OT, Naive-Hashing, Diffie-
Hellman, Server-aided, COVID-19.

I. INTRODUCTION

In a world where more and more applications are becoming
data-driven, i.e., our input data dictates how the app works,
needs for security and privacy emerge exponentially. Lot of
applications related to big data, cloud computing, machine
learning, artificial intelligence, etc, need huge amount of data
to perform well, data that in the majority of the times is
highly sensitive. Therefore, we must seek technologies that are
privacy-preserving. Secure Multiparty Computation (SMPC
or SMC) is a possible solution to this problem. However,
as in many other scenarios, security and privacy has some
costs (mainly performance-related). In this paper I will do
a quick study about Secure Multiparty Computation. The
paper is divided into two main parts: a first section II more
theoretical where I talk about the basics of Secure Multiparty
Computation II-A, its problems II-B, and how Blockchain
is a possible solution to those II-C. As we will see, due to
performance and security issues, blockchain is not the perfect
solution. Trying to find a suitable solution, in Subsection II-D,
a blockchain-based platform named Enigma is presented. To
conclude this section, in II-E several applications of SMPC
are listed.

In a second part, in Section III I present a more practical
section where I study several different Private Set Intersection
protocols that use Secure Multiparty Computation. I also
perform some benchmarking tests between them and present
real world-case scenario where Private Set Intersection can be
useful in sections III-D and III-E, respectively.

Finally, in Section IV I conclude the paper.

II. SECURE MULTIPARTY COMPUTATION WITH
BLOCKCHAIN

A. Introduction - What is SMPC?

Secure Multiparty Computation (SMPC) is as simple as
do some kind of computation without revealing any users’
input or output. The main requirement of SMPC is that private
information must remain secret between the parties involved
in the computation, i.e., each party must only have access to
its input and never to others parties input (unless the other
party gives them permission).

SMPC born with the problem of two millionaires proposed
by [1]. In this problem, two millionaires were trying to
discover which one was richer without disclosing their wealth
to each other.

A more simple example to illustrate how SMPC can work
is the following one [2]:

• imagine a simple scenario where there are three different
employees (three different parties) trying to compute the
average salary between the three but without revealing
their own salary. An naive but effective approach would
be to each party divide its salary into three different
numbers (eg. for a 1000$ salary it could be divided into
500, 700, -200) and sends one for each party (including
himself). After the three parties do the same process, each
party ends up with three different numbers meaningless
by themselves alone (important that they need to seem
random for each party). After each party sums their three
numbers and join with the other parties sum (of course,
dividing by three, the number of parties) we get the
average without disclosing any salary.

B. Problems in SMPC

In SMPC we have five main requirements:
1) privacy - inputs secret to others all the time
2) correctness - final result is correct when everyone is

honest
3) fairness - corrupted party cannot get its output and deny

other parties to get their outputs
4) process should not be interrupted
5) corrupted adversaries (someone who tries to break the

protocol) should be detected
The problems against this protocol are any disruption of

these requirements. However, keeping fairness due to the fact
that participants may be dishonest is the most important among
those five. In addition, as we are gonna see in the second part
of this paper in Section III, as in many other scenarios, security
and privacy are achieved at the expense of performance (in this
scenario most related to scalability). Therefore, we must seek
not only secure but efficient SMPC solutions.

C. What is blockchain and how it can help?

The following motivation is also applicable to the next
subsection II-D since the solution Enigma is based in a
blockchain.



Centralization is becoming an increasing problem day by
day. Even if centralizing data has performance or money
benefits, the disadvantages outweigh those. It centralizes the
power and increases the possibility of corruption, inequality
and abuse of power. The lack of transparency regarding data
privacy (normally related to manipulation, surveillance or even
data breaches) can lead up to catastrophic events. Solutions to
decentralize this are necessary and although they may not be as
efficient as centralized ones, work must be done. Bitcoin and
other technologies using blockchains make us hopeful. With
such technologies we can develop decentralized applications
without a centralized party with full control of the participants
and their data. Transparency, irrefutable record of activities and
rewards for honest behaviors are some of the advantages we
can see on a blockchain.

Blockchain is a distributed database with some kind of
agreement. It is a decentralized peer-to-peer network persistent
with transparency and auditability. Also, its data structure are
data blocks in chain, i. e., in sequential order. By adding
an hash of the previous block to the current one makes the
blockchain immutable making it impossible for attackers to
act dishonestly without being detected (all operations can
be inserted into the blocks, which are distributed among the
different peers in the network).

Fig. 1: Blockchain structure
Image taken from [4].

These characteristics makes blockchain a possible solution
to SMPC that can solve both trust (fairness) and security
problems we have seen in the last subsection. Also, with some
tweaks, we can have a solution that while maintaining security,
is also efficient (this topic is talked in more detail in the next
subsection II-D).

With a blockchain we can have an agreement in decentral-
ized scenarios without the need of a trusted third party.

Parties receive rewards for acting honestly while malicious
ones are penalized if they are dishonest. Therefore, in such
system, parties are encouraged to be honest. Even if parties
still choose to be dishonest, since everything in blockchain is
auditable and non-tamperable, malicious actions stay logged
in the blockchain so we can know who is acting malicious
and penalize them. Also, with the help of smart contracts
(code that runs automatically when something happens in

the blockchain), we can automate this step (rewarding or
penalizing the parties).

However, we do not want to have everything public in the
blockchain (as it happens in Bitcoin, for example), i.e., private
data cannot flow fully exposed through every block in the
chain [5]. Regarding SMPC, some data should remain off-
chain (i.e., not visible in the blockchain where all parties can
see it). Also, having all data distributed over several nodes
(redundancy) can bring performance problems.

In the next subsection II-D we will see a viable and efficient
solution to perform SMPC called Enigma.

D. Enigma - a possible solution to bitcoin blockchains limi-
tations

Bitcoin and other related blockchains have some problems
when we think about SMPC: they are directly related to
cryptocurrency, all the data is public on the ledger and
performance-issues may arise.

That is why Enigma was born [5]: a decentralized computa-
tion platform based on blockchain. Combines both blockchain,
an off-chain storage and computation.

Off-chain is basically tasks that happen outside the
blockchain but a reference (encrypted or not) about them is
stored in the blockchain. When the task is to store some data,
normally a reference to the data is stored on the blockchain
but not the data itself (because sometimes this data is too
big). Also, off-chain storage happens when the data it-self
requires the ability to be changed or deleted [6] (this last point
is important in our scenario because parties should have the
possibility to remove their sensitive data when they wish).

It provides incentives and efficiency in order make Enigma
secure and a viable solution.

As it is based on a blockchain, Enigma is also a distributed
peer-to-peer network that enables different parties to join and
run computations while keeping each party inputs private to
each other.

Enigma is a highly optimized secure multiparty computation
algorithm and it is guaranteed by verifiable secret-sharing
scheme (in the image 2 we can see an illustration of this
scheme).

It is important to understand what a secret-sharing scheme
is: similarly to the example about the average salary presented
before in subsection II-A, in secret-sharing (also known as
secret splitting) we have a secret splitted between all the
computation parties called a share. The share on its own
has no usage but when combined together the secret can be
reconstructed. This scheme makes possible to perform secure
computations between multiple parties with Enigma.



Fig. 2: Secret Sharing Scheme
Image taken from [7].

Some important aspects about Enigma:
• it uses a blockchain to manage access control and tamper-

proof log of events
• with security deposits (explained later in this subsection)

and incentive fees provides corrections and fairness of
the system

• there is no need for a trusted third party (in other
schemes, the presence of a centralized third party ruin
everything since they can be the ones acting maliciously)
- autonomous control of personal data

• users can share their data with privacy (using cryptogra-
phy) and the access control to the data is managed by the
blockchain

With Enigma we can achieve decentralized computation
with guaranteed privacy. With Privacy by design we can
develop end to end decentralized applications without trusted
third parties and achieve two characteristics that were not
possible before:

• Private: Enigma uses SMPC and data queries are com-
puted in a distributed way. The data is spit between dif-
ferent nodes and those nodes compute functions together
without leaking information to other nodes. In any point
no single party has access to data in its entirety, they only
have access to a piece of it that by itself seems completely
random to them.

• Scalable: unlike in bitcoin, in Enigma, computations and
data storage are not replicated in every node. They are
stored in the off-chain resulting in less redundancy and,
consequently, more power for computation. A simple
application is again the example with the salary where
each party wants to know its position in the group but do
not want to disclose their salary to the others.

About Enigma’s design, as I said before, it is connected to
a blockchain and off-loads the private and intensive computa-
tions to an off-chain network. This computations that happen
outside the blockchain provide anonymity for the parties. The
transactions that occur are governed by the intrinsic properties
of the blockchain and because of that we have access control
with digital signatures and programmable permissions. This
model results in two different parts:

1) Enigma is used for private and computationally intensive
tasks. It ensures privacy and correctness.

2) By itself Enigma cannot provide fairness so that is where
the blockchain enters. It provides access control and
incentives to ensure correctness and fairness.

This model result in a system reliable, secure, fair and efficient.

After the computations, the proofs of correct execution are
stored on the blockchain that can be further audited. This way,
we can detect if parties are being honest or not.

Enigma also introduces the term of private contracts that
they claimed [5] to be more private smart contracts since their
state is not publicly shared.

To sum up, I will structure the Enigma’s components:

1) Storage: it is a distributed hash table that happens on
the off-chain and it is accessible through the blockchain
(it stores a reference to the data but not the data itself).
Private data is encrypted before sent to the storage and
access control enters the scene at this time when the
data owner allows his data to be shared between other
parties.

2) Private computation: is done using Enigma to execute
code without leaking the raw data to any node while
ensuring correct execution. Correct execution is guar-
anteed by deposit fees. Once a party enters in this
system, they are required to deposit a fee. If the parties
act honestly, they are rewarded. In the other hand, if
they act maliciously, Enigma takes their deposit and
distribute between the honest nodes. Dishonest nodes
are prevented to participate if their account balance is
below a minimum threshold and are removed from the
network if they do not deposit a fee again.

I will not go into details, but because Enigma uses the al-
gorithm SPDZ, guarantees security even if there are dishonest
nodes [8].

Another important feature of Enigma is the network re-
duction: the goal is to maximize the computational power of
the network. Choosing randomly between the nodes with best
reputation (measured by their publicly validated actions) and
load-balancing from the network, the network is fully used
since it will not choose the nodes that are being used (because
of the load balancing requirement).

Also, when developing application with Enigma, developers
can use the private keyword to specify private objects ensur-
ing that any computation involving those remain secure and
private. It is important to remember because the data is not
publicly available on the blockchain, only a reference to them.

Finally, the image below represents the comparison between
unsecure algorithms, naive SMPC algorithms and optimized
SMPC algorithm (Enigma):



Fig. 3: Comparison between different SMPC algorithms
Image taken from [5].

We can easily see that unsecure options remain constant
with increasing number of parties but, unsurprisingly, they
should not be considered since they are unsecure. Other SMPC
algorithms increase exponentially as the number of parties
increase. Fortunately, Enigma shows good results even when
the number of parties increase. This can make us hopeful for
the future.

E. Conclusion - countless possibilities

In this last subsection of this first part, I would like to
conclude with some possible applications of such solutions
(like Enigma). I collected some of the most interesting from
[5]:

• Data marketplace: if the users know that their data is be-
ing securely and privately processed (eg. using Enigma),
customers will be more willing to sell access it.

• Secure backend: prevent data breaches.
• Internal Segmentation: if the data is protected, companies

can prevent rogue employees.
• n-factor Authentication: biometrics data can be saved and

computed on enigma ensuring that only the data-owner
has access to it.

• Internet of Things (IoT): with the increase usage of this
type of technology, a new problem related to privacy
emerged. Using Enigma, this problem can be solved and
the data processed by IoT devices can remain private and
secure.

• Crypto-bank: gives the possibility to this type of bank
appear where users can use their banks to invest, make
loans, etc without publicly revealing their private details.

• Blind e-voting: as the name suggests, vote anonymously.
Also, it is important to note that using such technology

would be a good approach to be compliant with different reg-
ulations such as General Data Protection Regulation (GDPR).

III. REPORT - STUDY ON SMPC PSI

A. Introduction

Private Set Intersection (PSI) can be explained as when two
parties P1 and P2 with sets X and Y want to discover the in-
tersection between the sets without revealing any information
that is not in the intersection.

Common usages of such algorithm could be relationship
path discovery in social networks, botnet detection, testing

human genomes, proximity testing or cheater detection in
online games [11].

Normally, adding security to an insecure solution (as we
will see with PSI) makes them inefficient with more than two
orders of magnitude of overhead. Therefore, PSI solutions that
guarantee security are slower than tools that does not provide
any. However, as we will see in this section, there are already
solutions that provide acceptable results and we need them to
replace the unsafe solutions that are currently widely in use.

In this section I will perform a practical study about PSI
using the tool [9].

I start by doing a quick introduction about the four different
PSI protocols in Subsection III-B. Following, in Subsection
III-C with two different datasets (two different but relevant
contact lists) I use the four protocols to understand them better
and perform some comparisons.

In section III-D, I use the tool psi.exe provided by [9] to
perform some benchmarking tests between the protocols and
give my two cents’ worth.

Finally, in Subsection III-E, I explain a real-world scenario
where PSI could be useful and use the most effective protocol
to calculate the intersections in the datasets I made artificially
using [10].

All files used and obtained in this section can be found in
this google drive url.

B. Comparison between four PSI protocols

As said before, the tool provided in [9] uses four different
PSI protocols. I tried to collect some information from the
following references [12] [13] [11] to explain explain them:

1) Naive Hashing: we hash all elements and instead of
comparing them in plaintext, we compare only the
hashes. This solution has the overhead of hashing ev-
erything but after that is fast since we just compare the
hashes just like any insecure algorithm compares the
values in clear text resulting in a very efficient solution.
Of course this solution is insecure. If the input domain is
small or has low entropy, i.e., easy to predict an attacker
can easily bruteforce to calculate for all hashes likely to
be an input and compare with the hashes.

2) Server-aided: relies on the use of a third party that
makes the computational resources available as a ser-
vice. Tries to solve the problem of non-fairness and
non-scalable PSI algorithms but relies too much on
the honesty of the third party. This solution is against
everything we talked in the previous section II.

3) Diffie-Hellman-based: first PSI protocol with linear
communication complexity. It uses public key encryp-
tion. As expected if Elliptic-Curve Cryptography (ECC)
is used it is faster than using RSA. It basically allows
for two parties to verify if their preferences match using
public-key encryption. We can already see that this
solution will not be as efficient as desired (due to public-
key encryption known performance limitations).

4) OT-based: uses oblivious transfer and symmetric en-
cryption with special optimizations (hashing into spe-

https://drive.google.com/drive/folders/1LHcoKj3hPXsD9NbOMSGy_nYoqQjCPlYe?usp=sharing


cific bins to reduce the number of comparisons, more
about this at the end of this subsection) resulting in a
viable (and efficient) solution for PSI with SMPC.

As suggested in the assignment, I performed some basic
tests with pre-generated emails (emails alice and emails bob)
to compare the different protocols. Also, I generated 10000,
100000 and 1000000 emails with the toolemailgen.py
provided in [9] to see how the protocols behave when the
number of elements increase.

In order to further analyze the protocols, I sniffed the
packets exchanged with Wireshark. In [9] implementation, all
four protocols rely on a TCP connection. They start with a
packet SYN to start the connection, exchange messages using
a specific flag of TCP to push data named PSH and finish
the connection with packet FIN. Of course, all packets have
another packet associated called ACK that acknowledges if the
packet was received by the partner.

In Appendix A there are four different figures with the
packets exchanged and the respectively diagrams for each one
of the protocols. I put out all the packets that I thought were
not relevant to the protocol’s operation.

In PSI problem, the challenge is to compute the intersection
with the fewest comparisons. Normally, we would need square
of N (set size) comparisons but this results in a high number
of cryptographic operations in secure solutions (however, as
we will see, OT-based solution is promising).

In the naive-hashing solution presented in the figure 9
we have the sets 1,2 and 2,3. Both parties calculate the
hashes of their sets and sent to each other before closing
the collection (in packets 24 and 25). After that, each party
compares the hashes of the partner to their own and calculate
the intersections. This solution is the most used because of its
efficiency although we have already seen that it is not secure.

Server-aided solution in figure 10 the inputs were 1,2 and
2,3,4. Their sizes are sent from the clients to the server as
soon as they are connected. Right after the clients send their
hashed datasets to the server. When the server receives them it
computes the intersection and sends the number of intersection
and the intersected elements to each client.

Analysing the source code in [9] we can see that Diffie-
Hellman-based solution uses Elliptic-curve cryptography in-
stead of RSA for better performance. As we will see, this
solution is efficient to small datasets but as the size increases
the efficiency degrades exponentially. To understand the im-
plementation, parties’ inputs were 1,2 and 2,3. As we can see
in figure 11 the sizes of the datasets are exchanged in packets 4
and 14. Then, server sends its dataset after hashed and publicly
encrypted. The client returns its dataset hashed and encrypted.
The server encrypts the received client dataset with server’s
key and sends to the client. It is important to note that the
computation is only performed on the client side. So, in the
last step, the client has both datasets and can calculate the
intersections.

In OT-based protocol, oblivious transfer is used. In order
to otimize oblivious transfer, hashing can be used. We take
advantage of this right when we hash our dataset. The items are

hashed into a certain bin. When comes to the phase to compute
the intersections, only hashes in the same bin are compared.
Since there are less elements in a bin there will be less com-
parisons decreasing the number of necessary computations.
In order to ensure that parties cannot get information (from
empty bins for example), bins can be padded with dummy
items. Finally, in figure 12 we can see more relevant packets
exchanged. However, I did not understand the exchanges used
in this implementation of this protocol. First, both parties
exchange their sets sizes (packets 4 and 14). Then, in packets
24 and 26 I think the size of the bins that will be used
are exchanged. As in Diffie-Hellman-based the computation
is also done only on the client side after the client receives
the last packet from the server (packet 33).

C. Explanation about the chosen dataset and tests

In this subsection I used my phone contacts and the contacts
of a family member of mine. I had to clean the dataset since it
had too much unnecessary data and the numbers had different
formats (some had +351, others not). Also, I anonymized the
datasets to only include the first name of the person in both
datasets. One sample row of the dataset is:

Name Phone
João 912-345-678

The function to clean the dataset was a simple python script
stored in this url. Using any of the four protocols would easily
calculate the intersection between the two contact lists. A
sample output is the following:

Computation finished. Found 27 intersecting elements
:

Alberto,912-801-522
Jo o ,912-124-614
Rita,910-999-182
Andr ,912-652-328
Manel,917-528-563
Lu s ,912-718-030
Jos ,916-660-427
Ant nio ,918-663-338
Manuela,916-118-488
Rui,918-529-325
Alda,916-648-219
Lu sa ,912-413-679
Josefina,913-993-266
Tiago,915-818-207
Tatiana,917-594-335
Alexandre,917-591-567
Alexandrina,919-539-990
Jo o ,914-788-701
Nuno,934-268-653
Diana,912-564-520
Jo o ,968-748-261
Jo o ,914-893-288
Jo o ,915-579-154
Jo o ,917-300-854
Jo o ,962-720-125
Jo o ,918-963-016
Jo o ,911-033-775

Just because any of the protocols reach the desired goal,
it does not mean that any tool is suitable for the usecase. Of
course the naive hashing is insecure (explained in Subsection
III-A) and should not be used despite its low overhead.

https://www.wireshark.org/
https://gist.github.com/jose-donato/8f9abef589856c5b9c6521309ec46f6e


Wireshark Statistics for contacts dataset
Algorithm 0 1 2 3
Packets 30 34 36 37
Time span (s) 8.925 20.015 47.737 1.273
Average (packers p s) 3.4 1.7 0.8 29.1
Average packet size 235 300 927 1720
Bytes 7046 10184 33376 63654
Average bytes/s 786 508 699 49k
Average bits/s 6,315 4,070 5593 399k

Even if the server-aided approach uses a honest third-party,
the same hashes as the naive approach are also sent over the
internet making it possible for an attacker to sniff them. Also,
in this second algorithm, the time it needs to calculate the
intersection is also too much. In my opinion, this solution is
also non-viable.

This leaves us to the second and third algorithms: Diffie-
Hellman-based and OT-based, respectively. Since the second
algorithm is based on public key encryption, its overhead will
always be superior to solutions that use symmetric encryption
(such as OT-based). This higher overhead makes this solution
completely unusable when the number of elements increases.
In the subsection III-D, we will see that when the number of
elements increases, the algorithm struggles a lot to get the job
done, i.e., calculate the intersection between the two datasets.

This last algorithm, although it uses more bandwidth (easily
seen in the table above: bigger packet size and number of
bytes) is faster than other algorithms (with the exception of
native hashing but even though in the performance subsection
we will see that they are close). Therefore, in my opinion
and basing myself in the tests I have presented so far, the
best algorithm from a security vs. cost point of view the
third algorithm (OT-based) is the goto approach for Private
Set Intersection with SMPC. In the following subsection
III-D I will perform some benchmarking tests to confirm my
assumptions.

D. Performance Benchmarking of PSI protocols

As said before, I used the tool psi.exe provided by [9] to
perform some benchmarking tests against the three protocols.
It was unfortunate that the tool do not support the tests for
server-aided protocol, however, in the first subsection II-A I
perform some comparisons between all four protocols.

Performance Benchmarking
Alg. 0 - Set Size 5k 10k 100k 1000k 10000k
Required Time (s) 0.01 0.02 0.14 1.72 21.36
Data sent (MB) 0.04 0.09 0.95 9.54 104.90
Data received (MB) 0.04 0.09 0.95 9.54 104.90
Alg. 2 - Set Size 5k 10k 100k 1000k 10000k
Required Time (s) 16.02 32.25 320.80 3228.61 /
Data sent (MB) 0.33 0.66 6.58 65.80 /
Data received (MB) 0.18 0.35 3.54 35.29 /
Alg. 3 - Set Size 5k 10k 100k 1000k 10000k
Required Time (s) 1.33 1.39 2.76 13.9 /
Data sent (MB) 0.15 0.28 2.88 28.63 /
Data received (MB) 0.38 0.75 7.34 73.25 /

The cells marked with / are due to the fact that the tool
closed prematurely (probably due to the lack of resources of
the virtual machine).

All the data to calculate the following graphics can be found
in this url.

Fig. 4: Time comparison between three algorithms

In terms of required time, we clearly see that algorithm 2
that uses public key cryptography takes way too long making it
a solution non viable for the majority of the cases. In the other
hand, the times in algorithm 3 (OT-based) seem interesting. I
did an additional graphic comparing only this algorithm and
the naive hashing:

Fig. 5: Time comparison between two algorithms

Naive hashing wins, but not for much. These results makes
OT-based solution a very viable approach without missing
security/privacy.

https://docs.google.com/spreadsheets/d/19Q30kVw9-XfhpO9gGCppn9RpIkyWbW3vaKnrO2Afadc/edit?usp=sharing


Fig. 6: Data comparison between three algorithms

We can clearly see that these solutions that enable privacy
(algorithm 2 and 3) need lot more data to be transferred
(comparing to naive hashing). In my opinion, this is not serious
and is a trade-off that we have to accept.

The following image taken from [14] presents results similar
to those obtained with the tests performed:

Fig. 7: Protocols comparison taken from [14].

The black point in the bottom-left corner is the solution that
uses naive-hashing and is by far the most efficient one but the
less secure. The OT-based comes close with only one order of
magnitude of overhead. The red circle represents the Diffie-
Hellman-based protocol and we can see that the one that uses
Elliptic-Curve Cryptography (ECC) is a viable solution when
the set sizes are not too big.

E. Real-world example where PSI can be useful - COVID-19
intersection

Due to COVID-19 pandemic, a new flood of applications
emerged to do contact-tracing and even localization-tracing. Of
course such applications are important but we need to make
sure those use privacy-preserving technologies.

As so, I generated random datasets containing the positions
of a certain person during the previous fourteen days (given
that 14 is the maximum number of days for COVID-19

incubation period according to [15]). Therefore, if we have
background that given two different parties one of those is in-
fected, we can use PSI algorithms to calculate the intersection
between the two sets of positions of those parties, i.e., if they
had been in the same place on the same day.

To generate the datasets, I used [10]:

Fig. 8: Mockaroo fields. Image captured on [10].

By default, mockaroo generates latitudes and longitudes
with a lot of decimal cases (eg. lat: 38.6395893, long: -
8.9690651) that could result in no intersection between the
datasets. Therefore, I made another simple script in python
(can be find in this url) to remove the decimal cases in both
latitude and longitude and replace them by .0. A sample row
in this dataset is (latitude, longitude, date):

Latitude Longitude Date
47.0 124.0 28/06/2020

With both datasets prepared, we can use the PSI algorithm
to calculate the intersections. Following the last subsection, I
chose, as expected, the third algorithm (OT-based, -p 3 in the
tool [9]). The output is the following:
Hashing 1000 elements with arbitrary length into

into 8 bytes
Client: bins = 1200, elebitlen = 54 and maskbitlen =

64 and performs 1200 OTs
Computation finished. Found 31 intersecting elements

:
49.0,14.0,1/1/2020
-6.0,107.0,1/16/2020
15.0,120.0,1/8/2020
-7.0,108.0,1/8/2020
-7.0,108.0,1/8/2020
7.0,124.0,1/29/2020
-7.0,-35.0,1/10/2020
41.0,-8.0,1/22/2020
41.0,-8.0,1/22/2020
48.0,2.0,1/2/2020
49.0,17.0,1/28/2020
41.0,-8.0,1/16/2020
45.0,-72.0,1/31/2020
39.0,117.0,1/17/2020
49.0,18.0,1/14/2020
59.0,17.0,1/21/2020
-6.0,106.0,1/1/2020
-6.0,106.0,1/1/2020
10.0,123.0,1/22/2020
-7.0,112.0,1/7/2020
60.0,29.0,1/2/2020
59.0,15.0,1/11/2020
-7.0,108.0,1/18/2020
40.0,19.0,1/12/2020
59.0,54.0,1/19/2020
41.0,-8.0,1/31/2020
41.0,-8.0,1/6/2020
-6.0,111.0,1/28/2020

https://gist.github.com/jose-donato/32d333a713d4e512c455649daaf272e1


-7.0,112.0,1/3/2020
-8.0,113.0,1/22/2020
14.0,121.0,1/10/2020

By itself, the output does not say much. It only says that
both people had been in the same place in the same day 31
times but because the data is completely artificial the output
is not relevant.

However, this was a simple but good example of an appli-
cation of PSI where without revealing all the 1000 positions
of both parties, we can see where they intersect themselves.

IV. CONCLUSION

In this paper I showed that achieving security and privacy in
computations is hard and costly. In my opinion this is the main
reason why unsecure solutions are still being used. We seen
in this paper that solutions with privacy and security require
more data, are more complex and have more latency (although
the gap is closing).

As computers are getting faster and faster we need to put
performance in the background and focus more on security
until we get secure alternatives.

It is not just negative points, we also seen that solutions like
Enigma seen in Section II and OT-based PSI seen in Section III
are promising and in addition to ensuring security and privacy,
they achieve results similar to unsafe solutions.

REFERENCES

[1] Yao, Andrew C. ”Protocols for secure computations.” 23rd annual sym-
posium on foundations of computer science (sfcs 1982). IEEE, 1982.

[2] (2020, June 29). What is Secure Multiparty Computation
— inpher. Retrieved from https://www.inpher.io/technology/
what-is-secure-multiparty-computation

[3] Zhong, Hanrui, et al. ”Secure multi-party computation on blockchain:
An overview.” International Symposium on Parallel Architectures, Algo-
rithms and Programming. Springer, Singapore, 2019.

[4] (2020, June 29). 1. THE BASICS OF BLOCKCHAIN & CRYPTOCUR-
RENCIES What is the Blockchain technology and how it works? Retrieved
from https://risingblockchain.com/what-is-the-blockchain-how-it-works/

[5] Zyskind, Guy, Oz Nathan, and Alex Pentland. ”Enigma: Decentral-
ized computation platform with guaranteed privacy.” arXiv preprint
arXiv:1506.03471 (2015).

[6] (2020, June 29). Why new off-chain storage is required for blockchains.
Retrieved from https://www.ibm.com/downloads/cas/RXOVXAPM

[7] taabishm2. (2020, June 29). Implementing Shamir’s
Secret Sharing Scheme in Python - Geeks-
forGeeks. Retrieved from https://www.geeksforgeeks.org/
implementing-shamirs-secret-sharing-scheme-in-python/

[8] Baum, Carsten, Ivan Damgård, and Claudio Orlandi. ”Publicly auditable
secure multi-party computation.” International Conference on Security
and Cryptography for Networks. Springer, Cham, 2014.

[9] (2020, June 29). bluetrickpt/PSI: Implementations of Private Set Inter-
section Protocols. Retrieved from https://github.com/bluetrickpt/PSI

[10] (2020, June 30). Mockaroo - Random Data Generator and API Mocking
Tool — JSON / CSV / SQL / Excel. Retrieved from https://www.mockaroo.
com/

[11] Pinkas, Benny, Thomas Schneider, and Michael Zohner. ”Scalable
private set intersection based on OT extension.” ACM Transactions on
Privacy and Security (TOPS) 21.2 (2018): 1-35.

[12] Kamara, Seny, et al. ”Scaling private set intersection to billion-element
sets.” International Conference on Financial Cryptography and Data
Security. Springer, Berlin, Heidelberg, 2014.

[13] C. Meadows. A more efficient cryptographic matchmaking protocol
for use in the absence of a continuously available third party. In IEEE
S&P’86, pages 134–137. IEEE, 1986.

[14] (2020, July 6). Solving Private Set Intersection via Cuckoo Hashing:
Benny Pinkas, Bar-Ilan University, Israel - YouTube. Retrieved from https:
//www.youtube.com/watch?v=iXopZ7A7dM0

[15] (2020, June 29). Coronavirus Incubation Period (COVID-19) -
Worldometer. Retrieved from https://www.worldometers.info/coronavirus/
coronavirus-incubation-period/

https://www.inpher.io/technology/what-is-secure-multiparty-computation
https://www.inpher.io/technology/what-is-secure-multiparty-computation
https://risingblockchain.com/what-is-the-blockchain-how-it-works/
https://www.ibm.com/downloads/cas/RXOVXAPM
https://www.geeksforgeeks.org/implementing-shamirs-secret-sharing-scheme-in-python/
https://www.geeksforgeeks.org/implementing-shamirs-secret-sharing-scheme-in-python/
https://github.com/bluetrickpt/PSI
https://www.mockaroo.com/
https://www.mockaroo.com/
https://www.youtube.com/watch?v=iXopZ7A7dM0
https://www.youtube.com/watch?v=iXopZ7A7dM0
https://www.worldometers.info/coronavirus/coronavirus-incubation-period/
https://www.worldometers.info/coronavirus/coronavirus-incubation-period/


APPENDIX

Fig. 9: Naive-hashing exchanged packets and protocol diagram

Fig. 10: Server-aided exchanged packets and protocol diagram



Fig. 11: Diffie-Hellman-based exchanged packets and protocol
diagram

Fig. 12: OT-based exchanged packets and protocol diagram


	Introduction
	Secure Multiparty Computation with Blockchain
	Introduction - What is SMPC?
	Problems in SMPC
	What is blockchain and how it can help?
	Enigma - a possible solution to bitcoin blockchains limitations
	Conclusion - countless possibilities

	Report - Study on SMPC PSI
	Introduction
	Comparison between four PSI protocols
	Explanation about the chosen dataset and tests
	Performance Benchmarking of PSI protocols
	Real-world example where PSI can be useful - COVID-19 intersection

	Conclusion
	References
	Appendix

